IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v116y2014icp199-205.html
   My bibliography  Save this article

Production of renewable diesel via catalytic deoxygenation of natural triglycerides: Comprehensive understanding of reaction intermediates and hydrocarbons

Author

Listed:
  • Kim, Seok Ki
  • Han, Jae Young
  • Lee, Hong-shik
  • Yum, Taewoo
  • Kim, Yunje
  • Kim, Jaehoon

Abstract

This study describes an efficient one-step method for the comprehensive analysis of the composition of renewable diesel produced directly from a natural triglyceride, including evaluation of its content of partially deoxygenated species. Previous approaches have been capable of only limited, less detailed hydrocarbon analysis because of their poor ability to separate the middle distillates. Moreover, the complexity and the variety of partially deoxygenated reaction intermediates in a typical renewable green diesel, including alcohols, acids, esters, aldehydes, and ketones, have led to difficulties in analyzing the exact composition and in understanding the reaction pathway. Herein, we propose a novel four-dimensional gas chromatography approach combined with time-of-flight mass spectrometry (GC×GC-TOFMS) that will help us gain a fundamental understanding of the reaction pathways that arise when different catalysts and reaction conditions are used. This information could further help in developing deoxygenation catalysts and processes that are more efficient. Based on the GC×GC-TOFMS analysis, different deoxygenation reaction pathways were proposed to be dominant over various catalysts including Pd, Ni, CoMoSx, and NiMoSx under different reaction conditions.

Suggested Citation

  • Kim, Seok Ki & Han, Jae Young & Lee, Hong-shik & Yum, Taewoo & Kim, Yunje & Kim, Jaehoon, 2014. "Production of renewable diesel via catalytic deoxygenation of natural triglycerides: Comprehensive understanding of reaction intermediates and hydrocarbons," Applied Energy, Elsevier, vol. 116(C), pages 199-205.
  • Handle: RePEc:eee:appene:v:116:y:2014:i:c:p:199-205
    DOI: 10.1016/j.apenergy.2013.11.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913009690
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.11.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Srirangan, Kajan & Akawi, Lamees & Moo-Young, Murray & Chou, C. Perry, 2012. "Towards sustainable production of clean energy carriers from biomass resources," Applied Energy, Elsevier, vol. 100(C), pages 172-186.
    2. Turner, J.W.G. & Pearson, R.J. & Dekker, E. & Iosefa, B. & Johansson, K. & ac Bergström, K., 2013. "Extending the role of alcohols as transport fuels using iso-stoichiometric ternary blends of gasoline, ethanol and methanol," Applied Energy, Elsevier, vol. 102(C), pages 72-86.
    3. Fatih Demirbas, M., 2009. "Biorefineries for biofuel upgrading: A critical review," Applied Energy, Elsevier, vol. 86(Supplemen), pages 151-161, November.
    4. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Long, Feng & Liu, Weiguo & Jiang, Xia & Zhai, Qiaolong & Cao, Xincheng & Jiang, Jianchun & Xu, Junming, 2021. "State-of-the-art technologies for biofuel production from triglycerides: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Glisic, Sandra B. & Pajnik, Jelena M. & Orlović, Aleksandar M., 2016. "Process and techno-economic analysis of green diesel production from waste vegetable oil and the comparison with ester type biodiesel production," Applied Energy, Elsevier, vol. 170(C), pages 176-185.
    3. Xu, Junming & Jiang, Jianchun & Zhao, Jiaping, 2016. "Thermochemical conversion of triglycerides for production of drop-in liquid fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 331-340.
    4. Zhang, Xuesong & Lei, Hanwu & Zhu, Lei & Qian, Moriko & Zhu, Xiaolu & Wu, Joan & Chen, Shulin, 2016. "Enhancement of jet fuel range alkanes from co-feeding of lignocellulosic biomass with plastics via tandem catalytic conversions," Applied Energy, Elsevier, vol. 173(C), pages 418-430.
    5. Weiming Zhan & Kejiang Li & Rita Khanna & Yuri Konyukhov & Zeng Liang & Yushan Bu & Zhen Sun & Chunhe Jiang & Jianliang Zhang, 2024. "The Catalytic Effect of Pt on Lignin Pyrolysis: A Reactive Molecular Dynamics Study," Sustainability, MDPI, vol. 16(8), pages 1-14, April.
    6. Kuo, Yen-Ting & Almansa, G. Aranda & Vreugdenhil, B.J., 2018. "Catalytic aromatization of ethylene in syngas from biomass to enhance economic sustainability of gas production," Applied Energy, Elsevier, vol. 215(C), pages 21-30.
    7. Ameen, Mariam & Azizan, Mohammad Tazli & Yusup, Suzana & Ramli, Anita & Shahbaz, Muhammad & Aqsha, Aqsha, 2020. "Process optimization of green diesel selectivity and understanding of reaction intermediates," Renewable Energy, Elsevier, vol. 149(C), pages 1092-1106.
    8. Ameen, Mariam & Azizan, Mohammad Tazli & Yusup, Suzana & Ramli, Anita & Yasir, Madiha, 2017. "Catalytic hydrodeoxygenation of triglycerides: An approach to clean diesel fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1072-1088.
    9. Scaldaferri, C.A. & Pasa, V.M.D., 2019. "Green diesel production from upgrading of cashew nut shell liquid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 303-313.
    10. Stefania Lucantonio & Andrea Di Giuliano & Leucio Rossi & Katia Gallucci, 2023. "Green Diesel Production via Deoxygenation Process: A Review," Energies, MDPI, vol. 16(2), pages 1-44, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xuesong & Lei, Hanwu & Zhu, Lei & Qian, Moriko & Zhu, Xiaolu & Wu, Joan & Chen, Shulin, 2016. "Enhancement of jet fuel range alkanes from co-feeding of lignocellulosic biomass with plastics via tandem catalytic conversions," Applied Energy, Elsevier, vol. 173(C), pages 418-430.
    2. Demirbas, Ayhan, 2011. "Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems," Applied Energy, Elsevier, vol. 88(10), pages 3541-3547.
    3. Andres Quintero, Julian & Ruth Felix, Erika & Eduardo Rincón, Luis & Crisspín, Marianella & Fernandez Baca, Jaime & Khwaja, Yasmeen & Cardona, Carlos Ariel, 2012. "Social and techno-economical analysis of biodiesel production in Peru," Energy Policy, Elsevier, vol. 43(C), pages 427-435.
    4. Bagnato, Giuseppe & Boulet, Florent & Sanna, Aimaro, 2019. "Effect of Li-LSX zeolite, NiCe/Al2O3 and NiCe/ZrO2 on the production of drop-in bio-fuels by pyrolysis and hydrotreating of Nannochloropsis and isochrysis microalgae," Energy, Elsevier, vol. 179(C), pages 199-213.
    5. Van Dael, Miet & Van Passel, Steven & Pelkmans, Luc & Guisson, Ruben & Reumermann, Patrick & Luzardo, Nathalie Marquez & Witters, Nele & Broeze, Jan, 2013. "A techno-economic evaluation of a biomass energy conversion park," Applied Energy, Elsevier, vol. 104(C), pages 611-622.
    6. Jiang, Ting & Wang, Tiejun & Ma, Longlong & Li, Yuping & Zhang, Qing & Zhang, Xinghua, 2012. "Investigation on the xylitol aqueous-phase reforming performance for pentane production over Pt/HZSM-5 and Ni/HZSM-5 catalysts," Applied Energy, Elsevier, vol. 90(1), pages 51-57.
    7. Demirbas, M. Fatih, 2011. "Biofuels from algae for sustainable development," Applied Energy, Elsevier, vol. 88(10), pages 3473-3480.
    8. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Hazrat, M.A., 2015. "Prospect of biofuels as an alternative transport fuel in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 331-351.
    9. Sun, Shao-Long & Wen, Jia-Long & Ma, Ming-Guo & Sun, Run-Cang, 2014. "Enhanced enzymatic digestibility of bamboo by a combined system of multiple steam explosion and alkaline treatments," Applied Energy, Elsevier, vol. 136(C), pages 519-526.
    10. Moraes, Bruna S. & Junqueira, Tassia L. & Pavanello, Lucas G. & Cavalett, Otávio & Mantelatto, Paulo E. & Bonomi, Antonio & Zaiat, Marcelo, 2014. "Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: Profit or expense?," Applied Energy, Elsevier, vol. 113(C), pages 825-835.
    11. Demirbas, Ayhan, 2011. "Competitive liquid biofuels from biomass," Applied Energy, Elsevier, vol. 88(1), pages 17-28, January.
    12. Suhaiza Zailani & Mohammad Iranmanesh & Sunghyup Sean Hyun & Mohd Helmi Ali, 2019. "Barriers of Biodiesel Adoption by Transportation Companies: A Case of Malaysian Transportation Industry," Sustainability, MDPI, vol. 11(3), pages 1-15, February.
    13. Martinez-Hernandez, Elias & Sadhukhan, Jhuma & Campbell, Grant M., 2013. "Integration of bioethanol as an in-process material in biorefineries using mass pinch analysis," Applied Energy, Elsevier, vol. 104(C), pages 517-526.
    14. Zhu, Zhe & Rosendahl, Lasse & Toor, Saqib Sohail & Yu, Donghong & Chen, Guanyi, 2015. "Hydrothermal liquefaction of barley straw to bio-crude oil: Effects of reaction temperature and aqueous phase recirculation," Applied Energy, Elsevier, vol. 137(C), pages 183-192.
    15. Peng, Lincai & Lin, Lu & Li, Hui & Yang, Qiulin, 2011. "Conversion of carbohydrates biomass into levulinate esters using heterogeneous catalysts," Applied Energy, Elsevier, vol. 88(12), pages 4590-4596.
    16. Aboagye, D. & Banadda, N. & Kiggundu, N. & Kabenge, I., 2017. "Assessment of orange peel waste availability in ghana and potential bio-oil yield using fast pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 814-821.
    17. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    18. Al-Qahtani, Amjad & González-Garay, Andrés & Bernardi, Andrea & Galán-Martín, Ángel & Pozo, Carlos & Dowell, Niall Mac & Chachuat, Benoit & Guillén-Gosálbez, Gonzalo, 2020. "Electricity grid decarbonisation or green methanol fuel? A life-cycle modelling and analysis of today′s transportation-power nexus," Applied Energy, Elsevier, vol. 265(C).
    19. Bauer, Fredric & Hulteberg, Christian, 2014. "Isobutanol from glycerine – A techno-economic evaluation of a new biofuel production process," Applied Energy, Elsevier, vol. 122(C), pages 261-268.
    20. Sánchez, S. & Lozano, L.J. & Godínez, C. & Juan, D. & Pérez, A. & Hernández, F.J., 2010. "Carob pod as a feedstock for the production of bioethanol in Mediterranean areas," Applied Energy, Elsevier, vol. 87(11), pages 3417-3424, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:116:y:2014:i:c:p:199-205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.