IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v111y2019icp303-313.html
   My bibliography  Save this article

Green diesel production from upgrading of cashew nut shell liquid

Author

Listed:
  • Scaldaferri, C.A.
  • Pasa, V.M.D.

Abstract

In recent years, there has been a strong global interest in developing technologies for converting renewable and low-cost raw materials into green diesel and bio-jet fuel, which are made of hydrocarbons. In this work, cashew nut shell liquid (CNSL), which is an industrial waste, was used as a feedstock to produce green diesel. Different reaction conditions during the upgrading process (deoxygenation, hydrogenation and cracking) were evaluated using palladium over activated charcoal (Pd/C) as a catalyst. The catalyst was characterized by X-ray diffraction and specific surface area analysis. The influences of the reaction parameters, such as temperature (180, 250 and 300 °C), time (5 and 10 h) and pressure (10, 20, 30 and 40 bar), were investigated using 10% w/w Pd/C. The composition of the products was determined using gas chromatography coupled with mass spectrometry and infrared spectroscopy. Higher pressures and temperatures led to a higher degree of deoxygenation and hydrogenation. In contrast, lower pressures or temperatures resulted in higher degrees of cracking. From the optimization experiments, a 98% yield of hydrocarbons corresponding to the diesel range was obtained under a 40 bar H2 atmosphere at 300 °C, 10 h, and 500 rpm (in a batch reactor). Of these hydrocarbons, 89% were saturated alkanes, 3% were aromatic compounds and 6% were oxygenated compounds. This new and sustainable route is promising because it involves the conversion of a low-value residue into green diesel using mild experimental conditions. Biofuel production from CNSL allows the total valorization of the residues in the cashew-nut agroindustrial chain and has potential industrial applications in many countries.

Suggested Citation

  • Scaldaferri, C.A. & Pasa, V.M.D., 2019. "Green diesel production from upgrading of cashew nut shell liquid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 303-313.
  • Handle: RePEc:eee:rensus:v:111:y:2019:i:c:p:303-313
    DOI: 10.1016/j.rser.2019.04.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119302783
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.04.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gutiérrez-Antonio, C. & Gómez-Castro, F.I. & de Lira-Flores, J.A. & Hernández, S., 2017. "A review on the production processes of renewable jet fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 709-729.
    2. Sanjeeva, Shilpa Kammaradi & Pinto, Mitchell Preetham & Narayanan, Manoj Mulakkapurath & Kini, Gopalakrishna Mangalore & Nair, Chandrasekhar Bhaskaran & SubbaRao, P.V. & Pullela, Phani Kumar & Ramamoo, 2014. "Distilled technical cashew nut shell liquid (DT-CNSL) as an effective biofuel and additive to stabilize triglyceride biofuels in diesel," Renewable Energy, Elsevier, vol. 71(C), pages 81-88.
    3. Salvi, B.L. & Subramanian, K.A., 2015. "Sustainable development of road transportation sector using hydrogen energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1132-1155.
    4. Xiu, Shuangning & Shahbazi, Abolghasem, 2012. "Bio-oil production and upgrading research: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4406-4414.
    5. Parajuli, Ranjan & Dalgaard, Tommy & Jørgensen, Uffe & Adamsen, Anders Peter S. & Knudsen, Marie Trydeman & Birkved, Morten & Gylling, Morten & Schjørring, Jan Kofod, 2015. "Biorefining in the prevailing energy and materials crisis: a review of sustainable pathways for biorefinery value chains and sustainability assessment methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 244-263.
    6. Kim, Seok Ki & Han, Jae Young & Lee, Hong-shik & Yum, Taewoo & Kim, Yunje & Kim, Jaehoon, 2014. "Production of renewable diesel via catalytic deoxygenation of natural triglycerides: Comprehensive understanding of reaction intermediates and hydrocarbons," Applied Energy, Elsevier, vol. 116(C), pages 199-205.
    7. Yahya, Mohd Adib & Al-Qodah, Z. & Ngah, C.W. Zanariah, 2015. "Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 218-235.
    8. Kasiraman, G. & Nagalingam, B. & Balakrishnan, M., 2012. "Performance, emission and combustion improvements in a direct injection diesel engine using cashew nut shell oil as fuel with camphor oil blending," Energy, Elsevier, vol. 47(1), pages 116-124.
    9. Patel, Madhumita & Kumar, Amit, 2016. "Production of renewable diesel through the hydroprocessing of lignocellulosic biomass-derived bio-oil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1293-1307.
    10. Arun, Naveenji & Sharma, Rajesh V. & Dalai, Ajay K., 2015. "Green diesel synthesis by hydrodeoxygenation of bio-based feedstocks: Strategies for catalyst design and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 240-255.
    11. Faba, Laura & Díaz, Eva & Ordóñez, Salvador, 2015. "Recent developments on the catalytic technologies for the transformation of biomass into biofuels: A patent survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 273-287.
    12. Demirbas, Ayhan, 2011. "Competitive liquid biofuels from biomass," Applied Energy, Elsevier, vol. 88(1), pages 17-28, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. K. M. V. Ravi Teja & P. Issac Prasad & K. Vijaya Kumar Reddy & Nagaraj R. Banapurmath & Muhammad A. Kalam & C. Ahamed Saleel, 2022. "Effect of Injection Parameters on the Performance of Compression Ignition Engine Powered with Jamun Seed and Cashew Nutshell B20 Biodiesel Blends," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    2. Huang, Endai & Zhang, Xiaolei & Rodriguez, Luis & Khanna, Madhu & de Jong, Sierk & Ting, K.C. & Ying, Yibin & Lin, Tao, 2019. "Multi-objective optimization for sustainable renewable jet fuel production: A case study of corn stover based supply chain system in Midwestern U.S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Stefania Lucantonio & Andrea Di Giuliano & Leucio Rossi & Katia Gallucci, 2023. "Green Diesel Production via Deoxygenation Process: A Review," Energies, MDPI, vol. 16(2), pages 1-44, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xin & Luo, Xingyi & Jin, Yangbin & Li, Jinyan & Zhang, Hongdan & Zhang, Aiping & Xie, Jun, 2018. "Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectively upgrading the renewable bio-oils to second generation biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3762-3797.
    2. Hansen, Samuel & Mirkouei, Amin & Diaz, Luis A., 2020. "A comprehensive state-of-technology review for upgrading bio-oil to renewable or blended hydrocarbon fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    3. Magdeldin, Mohamed & Kohl, Thomas & Järvinen, Mika, 2017. "Techno-economic assessment of the by-products contribution from non-catalytic hydrothermal liquefaction of lignocellulose residues," Energy, Elsevier, vol. 137(C), pages 679-695.
    4. Amarasekara, Ananda S. & Gutierrez Reyes, Cristian D., 2019. "Brønsted acidic ionic liquid catalyzed one-pot conversion of cellulose to furanic biocrude and identification of the products using LC-MS," Renewable Energy, Elsevier, vol. 136(C), pages 352-357.
    5. Shemfe, Mobolaji B. & Whittaker, Carly & Gu, Sai & Fidalgo, Beatriz, 2016. "Comparative evaluation of GHG emissions from the use of Miscanthus for bio-hydrocarbon production via fast pyrolysis and bio-oil upgrading," Applied Energy, Elsevier, vol. 176(C), pages 22-33.
    6. Ameen, Mariam & Azizan, Mohammad Tazli & Yusup, Suzana & Ramli, Anita & Shahbaz, Muhammad & Aqsha, Aqsha, 2020. "Process optimization of green diesel selectivity and understanding of reaction intermediates," Renewable Energy, Elsevier, vol. 149(C), pages 1092-1106.
    7. Chand, Rishav & Babu Borugadda, Venu & Qiu, Michael & Dalai, Ajay K., 2019. "Evaluating the potential for bio-fuel upgrading: A comprehensive analysis of bio-crude and bio-residue from hydrothermal liquefaction of agricultural biomass," Applied Energy, Elsevier, vol. 254(C).
    8. Sharifzadeh, M. & Wang, L. & Shah, N., 2015. "Decarbonisation of olefin processes using biomass pyrolysis oil," Applied Energy, Elsevier, vol. 149(C), pages 404-414.
    9. Glisic, Sandra B. & Pajnik, Jelena M. & Orlović, Aleksandar M., 2016. "Process and techno-economic analysis of green diesel production from waste vegetable oil and the comparison with ester type biodiesel production," Applied Energy, Elsevier, vol. 170(C), pages 176-185.
    10. Sadhukhan, Jhuma & Martinez-Hernandez, Elias & Murphy, Richard J. & Ng, Denny K.S. & Hassim, Mimi H. & Siew Ng, Kok & Yoke Kin, Wan & Jaye, Ida Fahani Md & Leung Pah Hang, Melissa Y. & Andiappan, Vikn, 2018. "Role of bioenergy, biorefinery and bioeconomy in sustainable development: Strategic pathways for Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1966-1987.
    11. Zhang, Chengzhi & Zhang, Xing & Wu, Jingfeng & Zhu, Lingjun & Wang, Shurong, 2022. "Hydrodeoxygenation of lignin-derived phenolics to cycloalkanes over Ni–Co alloy coupled with oxophilic NbOx," Applied Energy, Elsevier, vol. 328(C).
    12. Ong, Hwai Chyuan & Chen, Wei-Hsin & Farooq, Abid & Gan, Yong Yang & Lee, Keat Teong & Ashokkumar, Veeramuthu, 2019. "Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    13. Ameen, Mariam & Azizan, Mohammad Tazli & Yusup, Suzana & Ramli, Anita & Yasir, Madiha, 2017. "Catalytic hydrodeoxygenation of triglycerides: An approach to clean diesel fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1072-1088.
    14. No, Soo-Young, 2014. "Application of bio-oils from lignocellulosic biomass to transportation, heat and power generation—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1108-1125.
    15. Rosha, Pali & Kumar, Sandeep & Ibrahim, Hussameldin, 2022. "Sensitivity analysis of biomass pyrolysis for renewable fuel production using Aspen Plus," Energy, Elsevier, vol. 247(C).
    16. Aboagye, D. & Banadda, N. & Kiggundu, N. & Kabenge, I., 2017. "Assessment of orange peel waste availability in ghana and potential bio-oil yield using fast pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 814-821.
    17. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2013. "Combustion performance and emission characteristics study of pine oil in a diesel engine," Energy, Elsevier, vol. 57(C), pages 344-351.
    18. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    19. Xu, Junming & Jiang, Jianchun & Zhao, Jiaping, 2016. "Thermochemical conversion of triglycerides for production of drop-in liquid fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 331-340.
    20. Vasaki E, Madhu & Karri, Rama Rao & Ravindran, Gobinath & Paramasivan, Balasubramanian, 2021. "Predictive capability evaluation and optimization of sustainable biodiesel production from oleaginous biomass grown on pulp and paper industrial wastewater," Renewable Energy, Elsevier, vol. 168(C), pages 204-215.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:111:y:2019:i:c:p:303-313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.