IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v490y2025ics0096300324006714.html
   My bibliography  Save this article

Optimal strategies for collective defined contribution plans when the stock and labor markets are co-integrated

Author

Listed:
  • Zhang, Jiannan
  • Chen, Ping
  • Jin, Zhuo
  • Li, Shuanming

Abstract

This paper investigates a collective defined contribution (CDC) pension fund scheme in continuous time, where members' contributions are fixed in advance, and benefit payments depend on the final salary rate. We take account of the co-integration between labor income and the stock market by letting the difference between logs of labor and dividends follow a mean-reverting process. Further, labor income is also a product of aggregate labor income and member's idiosyncratic shocks whose constant growth rate is unknown. It can be modeled by a continuous-time two-state hidden Markov chain. Further, the pension fund can be invested in the financial market consisting of one risky asset and one risk-free asset to enhance profits. After using Hamilton-Jacobi-Bellman (HJB) equations, the closed-form solutions for the optimal asset allocation and the benefit payment policies are obtained to maximize the social welfare and the terminal surplus wealth. Numerical examples are also conducted to illustrate the sensitivity of parameters on the optimal strategies.

Suggested Citation

  • Zhang, Jiannan & Chen, Ping & Jin, Zhuo & Li, Shuanming, 2025. "Optimal strategies for collective defined contribution plans when the stock and labor markets are co-integrated," Applied Mathematics and Computation, Elsevier, vol. 490(C).
  • Handle: RePEc:eee:apmaco:v:490:y:2025:i:c:s0096300324006714
    DOI: 10.1016/j.amc.2024.129210
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324006714
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.129210?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:490:y:2025:i:c:s0096300324006714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.