IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v428y2022ics0096300322002491.html
   My bibliography  Save this article

Efficient computation of recurrence quantification analysis via microstates

Author

Listed:
  • Froguel, Lucas Belasque
  • de Lima Prado, Thiago
  • Corso, Gilberto
  • dos Santos Lima, Gustavo Zampier
  • Lopes, Sergio Roberto

Abstract

Recurrence plot (RP) is a powerful tool in the study of nonlinear dynamics, being successfully applied in economics, medicine, geophysics, and astronomy. The Recurrence Quantification Analysis (RQA) consists of a methodology to compute RP quantifiers based on statistics over vertical/diagonal recurrent lines, densities, and other features of the RP. The traditional way to calculate the quantifiers computes each recurrent point individually and builds the histogram of the whole RP. Here we propose a new, statistical approach to calculate the quantifiers using the (recurrence) microstates, which are small representative chunks of the RP. The new way of statistically calculating the quantifiers converges fast and brings a computational gain. In particular, it reduces the time complexity from O(K2) to O(K), for K the size of the time-series. Moreover, we show that our results are independent of the system and series size.

Suggested Citation

  • Froguel, Lucas Belasque & de Lima Prado, Thiago & Corso, Gilberto & dos Santos Lima, Gustavo Zampier & Lopes, Sergio Roberto, 2022. "Efficient computation of recurrence quantification analysis via microstates," Applied Mathematics and Computation, Elsevier, vol. 428(C).
  • Handle: RePEc:eee:apmaco:v:428:y:2022:i:c:s0096300322002491
    DOI: 10.1016/j.amc.2022.127175
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322002491
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Despotovic, Milan & Nedic, Vladimir & Despotovic, Danijela & Cvetanovic, Slobodan, 2016. "Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 246-260.
    2. Leonardi, Giuseppe, 2018. "A Method for the computation of entropy in the Recurrence Quantification Analysis of categorical time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 824-836.
    3. Bastos, João A. & Caiado, Jorge, 2011. "Recurrence quantification analysis of global stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(7), pages 1315-1325.
    4. Corso, Gilberto & dos Santos Lima, Gustavo Zampier & Lopes, Sergio Roberto & Prado, Thiago Lima & Correa, Marcio Assolin & Bohn, Felipe, 2021. "Maximum entropy in the dimensional transition of the magnetic domain wall dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 568(C).
    5. Lopes, S.R. & Prado, T.L. & Corso, G. & dos S. Lima, G.Z. & Kurths, J., 2020. "Parameter-free quantification of stochastic and chaotic signals," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Mengjia & Shang, Pengjian & Lin, Aijing, 2017. "Multiscale recurrence quantification analysis of order recurrence plots," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 381-389.
    2. Kieu Anh Nguyen & Walter Chen & Bor-Shiun Lin & Uma Seeboonruang, 2020. "Using Machine Learning-Based Algorithms to Analyze Erosion Rates of a Watershed in Northern Taiwan," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
    3. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparison of empirical models to estimate monthly mean diffuse solar radiation from measured data: Case study for humid-subtropical climatic region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1326-1342.
    4. Marisa Faggini, 2011. "Chaotic Time Series Analysis in Economics: Balance and Perspectives," Working papers 25, Former Department of Economics and Public Finance "G. Prato", University of Torino.
    5. Feng, Lan & Lin, Aiwen & Wang, Lunche & Qin, Wenmin & Gong, Wei, 2018. "Evaluation of sunshine-based models for predicting diffuse solar radiation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 168-182.
    6. Luo, Laipeng & Zhang, Zhiyi & Li, Chong & Nishu, & He, Fang & Zhang, Xingguang & Cai, Junmeng, 2021. "Insight into master plots method for kinetic analysis of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 233(C).
    7. Park, Jinkyu & Oh, Jungmo, 2023. "A machine learning based predictive maintenance algorithm for ship generator engines using engine simulations and collected ship data," Energy, Elsevier, vol. 285(C).
    8. Chen, Yuan & Lin, Aijing, 2022. "Order pattern recurrence for the analysis of complex systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    9. Hassan, Gasser E. & Youssef, M. Elsayed & Mohamed, Zahraa E. & Ali, Mohamed A. & Hanafy, Ahmed A., 2016. "New Temperature-based Models for Predicting Global Solar Radiation," Applied Energy, Elsevier, vol. 179(C), pages 437-450.
    10. Alomran, Abdulrasoul Mosa & Louki, Ibrahim Idriss, 2024. "Impact of irrigation systems on water saving and yield of greenhouse and open field cucumber production in Saudi Arabia," Agricultural Water Management, Elsevier, vol. 302(C).
    11. Teresa Aparicio & Dulce Saura, 2013. "Do Exchange Rate Series Present General Dependence? Some Results using Recurrence Quantification Analysis," Journal of Economics and Behavioral Studies, AMH International, vol. 5(10), pages 678-686.
    12. Qin, Wenmin & Wang, Lunche & Lin, Aiwen & Zhang, Ming & Xia, Xiangao & Hu, Bo & Niu, Zigeng, 2018. "Comparison of deterministic and data-driven models for solar radiation estimation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 579-594.
    13. Wang, Lunche & Lu, Yunbo & Zou, Ling & Feng, Lan & Wei, Jing & Qin, Wenmin & Niu, Zigeng, 2019. "Prediction of diffuse solar radiation based on multiple variables in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 151-216.
    14. Ioannis Andreadis & Athanasios D. Fragkou & Theodoros E. Karakasidis & Apostolos Serletis, 2023. "Nonlinear dynamics in Divisia monetary aggregates: an application of recurrence quantification analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-17, December.
    15. Tantisantiwong, Nongnuch & Halari, Anwar & Helliar, Christine & Power, David, 2018. "East meets West: When the Islamic and Gregorian calendars coincide," The British Accounting Review, Elsevier, vol. 50(4), pages 402-424.
    16. Giuseppe Orlando & Giovanna Zimatore, 2021. "Recurrence Quantification Analysis of Business Cycles," Dynamic Modeling and Econometrics in Economics and Finance, in: Giuseppe Orlando & Alexander N. Pisarchik & Ruedi Stoop (ed.), Nonlinearities in Economics, chapter 0, pages 269-282, Springer.
    17. Leonidas Sandoval Junior, 2013. "To lag or not to lag? How to compare indices of stock markets that operate at different times," Business and Economics Working Papers 195, Unidade de Negocios e Economia, Insper.
    18. Sanjay Sathish & Charu C Sharma, 2024. "Leveraging RNNs and LSTMs for Synchronization Analysis in the Indian Stock Market: A Threshold-Based Classification Approach," Papers 2409.06728, arXiv.org.
    19. Froidevaux, Jérémy S.P. & Le Viol, Isabelle & Barré, Kévin & Bas, Yves & Kerbiriou, Christian, 2025. "A modeling framework for biodiversity assessment in renewable energy development: A case study on European bats and wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    20. Yang, Liu & Cao, Qimeng & Yu, Ying & Liu, Yan, 2020. "Comparison of daily diffuse radiation models in regions of China without solar radiation measurement," Energy, Elsevier, vol. 191(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:428:y:2022:i:c:s0096300322002491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.