IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v356y2019icp282-298.html
   My bibliography  Save this article

Basin Hopping with synched multi L-BFGS local searches. Parallel implementation in multi-CPU and GPUs

Author

Listed:
  • Ferreiro-Ferreiro, Ana M.
  • García-Rodríguez, José A.
  • Souto, Luis
  • Vázquez, Carlos

Abstract

In this work, a technique for improving the convergence properties (speed and reliability) of a non monotonic Basin Hopping algorithm is presented. This modification of Basin Hopping happens to be highly parallelizable and therefore the parallel implementation is shown both for multi-CPU and GPU architectures. A benchmark of classical global optimization tests is run, focussing in a number of tests in the literature that result to be particularly hard for Basin Hopping.

Suggested Citation

  • Ferreiro-Ferreiro, Ana M. & García-Rodríguez, José A. & Souto, Luis & Vázquez, Carlos, 2019. "Basin Hopping with synched multi L-BFGS local searches. Parallel implementation in multi-CPU and GPUs," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 282-298.
  • Handle: RePEc:eee:apmaco:v:356:y:2019:i:c:p:282-298
    DOI: 10.1016/j.amc.2019.02.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319301444
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.02.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Konstantin Barkalov & Victor Gergel, 2016. "Parallel global optimization on GPU," Journal of Global Optimization, Springer, vol. 66(1), pages 3-20, September.
    2. A. Ferreiro & J. García & J. López-Salas & C. Vázquez, 2013. "An efficient implementation of parallel simulated annealing algorithm in GPUs," Journal of Global Optimization, Springer, vol. 57(3), pages 863-890, November.
    3. Goffe, William L. & Ferrier, Gary D. & Rogers, John, 1994. "Global optimization of statistical functions with simulated annealing," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 65-99.
    4. Weihang Zhu, 2011. "Massively parallel differential evolution—pattern search optimization with graphics hardware acceleration: an investigation on bound constrained optimization problems," Journal of Global Optimization, Springer, vol. 50(3), pages 417-437, July.
    5. Anatoly Zhigljavsky & Antanas Žilinskas, 2008. "Stochastic Global Optimization," Springer Optimization and Its Applications, Springer, number 978-0-387-74740-8, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ferreiro-Ferreiro, Ana María & García-Rodríguez, José A. & Souto, Luis & Vázquez, Carlos, 2020. "A new calibration of the Heston Stochastic Local Volatility Model and its parallel implementation on GPUs," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 467-486.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ferreiro-Ferreiro, Ana María & García-Rodríguez, José A. & Souto, Luis & Vázquez, Carlos, 2020. "A new calibration of the Heston Stochastic Local Volatility Model and its parallel implementation on GPUs," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 467-486.
    2. Konstantin Barkalov & Victor Gergel, 2016. "Parallel global optimization on GPU," Journal of Global Optimization, Springer, vol. 66(1), pages 3-20, September.
    3. Ana Maria Ferreiro-Ferreiro & José Antonio García-Rodríguez & Luis A. Souto & Carlos Vázquez, 2020. "Efficient Model Points Selection in Insurance by Parallel Global Optimization Using Multi CPU and Multi GPU," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 62(1), pages 5-20, February.
    4. Daniela Lera & Yaroslav D. Sergeyev, 2018. "GOSH: derivative-free global optimization using multi-dimensional space-filling curves," Journal of Global Optimization, Springer, vol. 71(1), pages 193-211, May.
    5. Kvasov, Dmitri E. & Mukhametzhanov, Marat S., 2018. "Metaheuristic vs. deterministic global optimization algorithms: The univariate case," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 245-259.
    6. Thomas Baudin & Robert Stelter, 2022. "The rural exodus and the rise of Europe," Journal of Economic Growth, Springer, vol. 27(3), pages 365-414, September.
    7. Luca Benati & Paolo Surico, 2009. "VAR Analysis and the Great Moderation," American Economic Review, American Economic Association, vol. 99(4), pages 1636-1652, September.
    8. Andrey Pepelyshev & Anatoly Zhigljavsky & Antanas Žilinskas, 2018. "Performance of global random search algorithms for large dimensions," Journal of Global Optimization, Springer, vol. 71(1), pages 57-71, May.
    9. Asgharian, Hossein & Hess, Wolfgang & Liu, Lu, 2013. "A spatial analysis of international stock market linkages," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4738-4754.
    10. Luca Benati & Paolo Surico, 2008. "Evolving U.S. Monetary Policy and The Decline of Inflation Predictability," Journal of the European Economic Association, MIT Press, vol. 6(2-3), pages 634-646, 04-05.
    11. John M. Abowd & Francis Kramarz & Sébastien Pérez-Duarte & Ian M. Schmutte, 2018. "Sorting Between and Within Industries: A Testable Model of Assortative Matching," Annals of Economics and Statistics, GENES, issue 129, pages 1-32.
    12. Jason Matthew DeBacker, 2015. "Flip‐Flopping: Ideological Adjustment Costs In The United States Senate," Economic Inquiry, Western Economic Association International, vol. 53(1), pages 108-128, January.
    13. Luca Benati & Pierpaolo Benigno, 2023. "Gibson s Paradox and the Natural Rate of Interest," Diskussionsschriften dp2303, Universitaet Bern, Departement Volkswirtschaft.
    14. Haan, Peter & Prowse, Victoria L., 2010. "The Design of Unemployment Transfers: Evidence from a Dynamic Structural Life-Cycle Model," IZA Discussion Papers 4792, Institute of Labor Economics (IZA).
    15. Dufour, Jean-Marie, 2006. "Monte Carlo tests with nuisance parameters: A general approach to finite-sample inference and nonstandard asymptotics," Journal of Econometrics, Elsevier, vol. 133(2), pages 443-477, August.
    16. Green, Rikard & Larsson, Karl & Lunina, Veronika & Nilsson, Birger, 2018. "Cross-commodity news transmission and volatility spillovers in the German energy markets," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 231-243.
    17. Kapetanios, George & Marcellino, Massimiliano & Papailias, Fotis, 2016. "Forecasting inflation and GDP growth using heuristic optimisation of information criteria and variable reduction methods," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 369-382.
    18. Roman Sustek, 2011. "Monetary Business Cycle Accounting," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(4), pages 592-612, October.
    19. Jeffrey M. Wooldridge, 2002. "Inverse probability weighted M-estimators for sample selection, attrition and stratification," CeMMAP working papers 11/02, Institute for Fiscal Studies.
    20. Martin Andreasen, 2010. "How to Maximize the Likelihood Function for a DSGE Model," Computational Economics, Springer;Society for Computational Economics, vol. 35(2), pages 127-154, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:356:y:2019:i:c:p:282-298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.