IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v353y2019icp189-207.html
   My bibliography  Save this article

Modeling, simulation and optimization of a pressure retarded osmosis power station

Author

Listed:
  • Di Michele, F.
  • Felaco, E.
  • Gasser, I.
  • Serbinovskiy, A.
  • Struchtrup, H.

Abstract

Pressure retarded osmosis (PRO) power plants generate power from mixing of saltwater and freshwater by means of membrane systems. In this paper we present a model which describes the complete power station, suitable to optimize the power station both with respect to system parameters and in operating conditions. Special attention is dedicated to the flow model of the “core” membrane unit. It considers the relevant water and salt flows in the system. It also accounts for irreversible losses in the flow across the membrane as well as through the membrane unit, and in the surrounding pump-turbine system. The model represents a compromise between needed complexity (including the most relevant chemo-physics) and simplicity to allow rapid simulations which is an important prerequisit for optimisation. Finally, we optimise numerically, i.e., the net power output (per membrane area) with respect to geometric parameters, membrane parameters as well as operational parameters such as the applied pressure settings during operation.

Suggested Citation

  • Di Michele, F. & Felaco, E. & Gasser, I. & Serbinovskiy, A. & Struchtrup, H., 2019. "Modeling, simulation and optimization of a pressure retarded osmosis power station," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 189-207.
  • Handle: RePEc:eee:apmaco:v:353:y:2019:i:c:p:189-207
    DOI: 10.1016/j.amc.2019.01.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630031930061X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.01.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maisonneuve, Jonathan & Pillay, Pragasen & Laflamme, Claude B., 2015. "Pressure-retarded osmotic power system model considering non-ideal effects," Renewable Energy, Elsevier, vol. 75(C), pages 416-424.
    2. Bruce E. Logan & Menachem Elimelech, 2012. "Membrane-based processes for sustainable power generation using water," Nature, Nature, vol. 488(7411), pages 313-319, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Hao & Guo, Pengcheng & Sun, Longgang, 2020. "Transient analysis of a multi-unit pumped storage system during load rejection process," Renewable Energy, Elsevier, vol. 152(C), pages 34-43.
    2. Long, Rui & Zhao, Yanan & Li, Mingliang & Pan, Yao & Liu, Zhichun & Liu, Wei, 2021. "Evaluations of adsorbents and salt-methanol solutions for low-grade heat driven osmotic heat engines," Energy, Elsevier, vol. 229(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maisonneuve, Jonathan & Chintalacheruvu, Sanjana, 2019. "Increasing osmotic power and energy with maximum power point tracking," Applied Energy, Elsevier, vol. 238(C), pages 683-695.
    2. He, Wei & Wang, Yang & Elyasigomari, Vahid & Shaheed, Mohammad Hasan, 2016. "Evaluation of the detrimental effects in osmotic power assisted reverse osmosis (RO) desalination," Renewable Energy, Elsevier, vol. 93(C), pages 608-619.
    3. Maisonneuve, Jonathan & Laflamme, Claude B. & Pillay, Pragasen, 2016. "Experimental investigation of pressure retarded osmosis for renewable energy conversion: Towards increased net power," Applied Energy, Elsevier, vol. 164(C), pages 425-435.
    4. Naguib, Maged Fouad & Maisonneuve, Jonathan & Laflamme, Claude B. & Pillay, Pragasen, 2015. "Modeling pressure-retarded osmotic power in commercial length membranes," Renewable Energy, Elsevier, vol. 76(C), pages 619-627.
    5. Wan, Chun Feng & Chung, Tai-Shung, 2016. "Energy recovery by pressure retarded osmosis (PRO) in SWRO–PRO integrated processes," Applied Energy, Elsevier, vol. 162(C), pages 687-698.
    6. He, Wei & Wang, Jihong, 2017. "Feasibility study of energy storage by concentrating/desalinating water: Concentrated Water Energy Storage," Applied Energy, Elsevier, vol. 185(P1), pages 872-884.
    7. Zohreh Jalili & Jon G. Pharoah & Odne Stokke Burheim & Kristian Etienne Einarsrud, 2018. "Temperature and Velocity Effects on Mass and Momentum Transport in Spacer-Filled Channels for Reverse Electrodialysis: A Numerical Study," Energies, MDPI, vol. 11(8), pages 1-24, August.
    8. Manzoor, Husnain & Selam, Muaz A. & Abdur Rahman, Fahim Bin & Adham, Samer & Castier, Marcelo & Abdel-Wahab, Ahmed, 2020. "A tool for assessing the scalability of pressure-retarded osmosis (PRO) membranes," Renewable Energy, Elsevier, vol. 149(C), pages 987-999.
    9. Tan, Guangcai & Xu, Nan & Gao, Dingxue & Zhu, Xiuping, 2022. "Superabsorbent graphene oxide/carbon nanotube hybrid Poly(acrylic acid-co-acrylamide) hydrogels for efficient salinity gradient energy harvest," Energy, Elsevier, vol. 258(C).
    10. Maisonneuve, Jonathan & Pillay, Pragasen & Laflamme, Claude B., 2015. "Osmotic power potential in remote regions of Quebec," Renewable Energy, Elsevier, vol. 81(C), pages 62-70.
    11. Tran, Thomas T.D. & Smith, Amanda D., 2017. "fEvaluation of renewable energy technologies and their potential for technical integration and cost-effective use within the U.S. energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1372-1388.
    12. Jin Wang & Zheng Cui & Shangzhen Li & Zeyuan Song & Miaolu He & Danxi Huang & Yuan Feng & YanZheng Liu & Ke Zhou & Xudong Wang & Lei Wang, 2024. "Unlocking osmotic energy harvesting potential in challenging real-world hypersaline environments through vermiculite-based hetero-nanochannels," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Chanda, Sourayon & Tsai, Peichun Amy, 2019. "Numerical simulation of renewable power generation using reverse electrodialysis," Energy, Elsevier, vol. 176(C), pages 531-543.
    14. Wen Yi Chia & Kuan Shiong Khoo & Shir Reen Chia & Kit Wayne Chew & Guo Yong Yew & Yeek-Chia Ho & Pau Loke Show & Wei-Hsin Chen, 2020. "Factors Affecting the Performance of Membrane Osmotic Processes for Bioenergy Development," Energies, MDPI, vol. 13(2), pages 1-22, January.
    15. Nagy, Endre & Dudás, József & Hegedüs, Imre, 2016. "Improvement of the energy generation by pressure retarded osmosis," Energy, Elsevier, vol. 116(P2), pages 1323-1333.
    16. Nasir, Muhammad & Nakanishi, Yuji & Patmonoaji, Anindityo & Suekane, Tetsuya, 2020. "Effects of porous electrode pore size and operating flow rate on the energy production of capacitive energy extraction," Renewable Energy, Elsevier, vol. 155(C), pages 278-285.
    17. Wan, Chun Feng & Chung, Tai-Shung, 2016. "Maximize the operating profit of a SWRO-PRO integrated process for optimal water production and energy recovery," Renewable Energy, Elsevier, vol. 94(C), pages 304-313.
    18. Jia, Zhijun & Wang, Baoguo & Song, Shiqiang & Fan, Yongsheng, 2014. "Blue energy: Current technologies for sustainable power generation from water salinity gradient," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 91-100.
    19. Abreham Tesfaye Besha & Misgina Tilahun Tsehaye & Girum Ayalneh Tiruye & Abaynesh Yihdego Gebreyohannes & Aymere Awoke & Ramato Ashu Tufa, 2020. "Deployable Membrane-Based Energy Technologies: the Ethiopian Prospect," Sustainability, MDPI, vol. 12(21), pages 1-33, October.
    20. Tamburini, A. & Tedesco, M. & Cipollina, A. & Micale, G. & Ciofalo, M. & Papapetrou, M. & Van Baak, W. & Piacentino, A., 2017. "Reverse electrodialysis heat engine for sustainable power production," Applied Energy, Elsevier, vol. 206(C), pages 1334-1353.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:353:y:2019:i:c:p:189-207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.