IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v97y2010i4p561-568.html
   My bibliography  Save this article

The challenges of wastewater irrigation in developing countries

Author

Listed:
  • Qadir, M.
  • Wichelns, D.
  • Raschid-Sally, L.
  • McCornick, P.G.
  • Drechsel, P.
  • Bahri, A.
  • Minhas, P.S.

Abstract

The volume of wastewater generated by domestic, industrial and commercial sources has increased with population, urbanization, improved living conditions, and economic development. The productive use of wastewater has also increased, as millions of small-scale farmers in urban and peri-urban areas of developing countries depend on wastewater or wastewater polluted water sources to irrigate high-value edible crops for urban markets, often as they have no alternative sources of irrigation water. Undesirable constituents in wastewater can harm human health and the environment. Hence, wastewater irrigation is an issue of concern to public agencies responsible for maintaining public health and environmental quality. For diverse reasons, many developing countries are still unable to implement comprehensive wastewater treatment programs. Therefore in the near term, risk management and interim solutions are needed to prevent adverse impacts from wastewater irrigation. A combination of source control, and farm-level and post-harvest measures can be used to protect farm workers and consumers. The WHO guidelines revised in 2006 for wastewater use suggest measures beyond the traditional recommendations of producing only industrial or non-edible crops, as in many situations it is impossible to enforce a change in the current cash crop pattern, or provide alternative vegetable supply to urban markets. There are several opportunities for improving wastewater management via improved policies, institutional dialogues and financial mechanisms, which would reduce the risks in agriculture. Effluent standards combined with incentives or enforcement can motivate improvements in water management by household and industrial sectors discharging wastewater from point sources. Segregation of chemical pollutants from urban wastewater facilitates treatment and reduces risk. Strengthening institutional capacity and establishing links between water delivery and sanitation sectors through inter-institutional coordination leads to more efficient management of wastewater and risk reduction.

Suggested Citation

  • Qadir, M. & Wichelns, D. & Raschid-Sally, L. & McCornick, P.G. & Drechsel, P. & Bahri, A. & Minhas, P.S., 2010. "The challenges of wastewater irrigation in developing countries," Agricultural Water Management, Elsevier, vol. 97(4), pages 561-568, April.
  • Handle: RePEc:eee:agiwat:v:97:y:2010:i:4:p:561-568
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(08)00298-9
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Obuobie, Emmanuel & Keraita, Bernard & Danso, George & Amoah, Philip & Cofie, Olufunke O. & Raschid-Sally, Liqa & Drechsel, Pay, 2006. "Irrigated urban vegetable production in Ghana: characteristics, benefits and risks," IWMI Books, International Water Management Institute, number 137958.
    2. Qadir, Manzoor & Wichelns, D & Raschid-Sally, Liqa & Minhas, P. S. & Drechsel, Pay & Bahri, Akissa & McCornick, Peter G. & Abaidoo, R. & Attia, F. & El-Guindy, S. & Ensink, J. H. J. & Jimenez, B. & Ki, 2007. "Agricultural use of marginal-quality water: opportunities and challenges," IWMI Books, Reports H040204, International Water Management Institute.
    3. Drechsel, Pay & Giordano, Mark & Gyiele, Lucy, 2004. "Valuing nutrients in soil and water: concepts and techniques with examples from IWMI studies in the developing world," IWMI Research Reports H035856, International Water Management Institute.
    4. Drechsel, Pay & Graefe, S. & Sonou, M. & Cofie, Olufunke, 2006. "Informal irrigation in urban West Africa: An overview," IWMI Research Reports H039249, International Water Management Institute.
    5. Qadir, M. & Sharma, B.R. & Bruggeman, A. & Choukr-Allah, R. & Karajeh, F., 2007. "Non-conventional water resources and opportunities for water augmentation to achieve food security in water scarce countries," Agricultural Water Management, Elsevier, vol. 87(1), pages 2-22, January.
    6. Toze, Simon, 2006. "Reuse of effluent water--benefits and risks," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 147-159, February.
    7. Trang, D. T. & van der Hoek, Wim & Cam, P. D. & Vinh, K. T. & Van Hoa, N. & Dalsgaard, A., 2006. "Low risk for helminth infection in wastewater-fed rice cultivation in Vietnam," Conference Papers h038719, International Water Management Institute.
    8. International Water Management Institute (IWMI)., 2003. "Confronting the realities of wastewater use in agriculture," IWMI Water Policy Briefings H033469, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zema, Demetrio Antonio & Bombino, Giuseppe & Andiloro, Serafina & Zimbone, Santo Marcello, 2012. "Irrigation of energy crops with urban wastewater: Effects on biomass yields, soils and heating values," Agricultural Water Management, Elsevier, vol. 115(C), pages 55-65.
    2. Kelly Sanders & Carey King & Ashlynn Stillwell & Michael Webber, 2013. "Clean energy and water: assessment of Mexico for improved water services and renewable energy," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 15(5), pages 1303-1321, October.
    3. Kun Cheng & Qiang Fu & Tianxiao Li & Qiuxiang Jiang & Wei Liu, 2015. "Regional food security risk assessment under the coordinated development of water resources," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 603-619, August.
    4. Zhang, Fan & Fogarty, James, 2015. "Nonmarket Valuation of Water Sensitive Cities: Current Knowledge and Issues," Working Papers 207694, University of Western Australia, School of Agricultural and Resource Economics.
    5. de Fraiture, Charlotte & Molden, David & Wichelns, Dennis, 2010. "Investing in water for food, ecosystems, and livelihoods: An overview of the comprehensive assessment of water management in agriculture," Agricultural Water Management, Elsevier, vol. 97(4), pages 495-501, April.
    6. Agrafioti, Evita & Diamadopoulos, Evan, 2012. "A strategic plan for reuse of treated municipal wastewater for crop irrigation on the Island of Crete," Agricultural Water Management, Elsevier, vol. 105(C), pages 57-64.
    7. Minhas, P.S. & Yadav, R.K. & Lal, K. & Chaturvedi, R.K., 2015. "Effect of long-term irrigation with wastewater on growth, biomass production and water use by Eucalyptus (Eucalyptus tereticornis Sm.) planted at variable stocking density," Agricultural Water Management, Elsevier, vol. 152(C), pages 151-160.
    8. Foued El Ayni & Semia Cherif & Amel Jrad & Malika Trabelsi-Ayadi, 2011. "Impact of Treated Wastewater Reuse on Agriculture and Aquifer Recharge in a Coastal Area: Korba Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(9), pages 2251-2265, July.
    9. Carr, Gemma & Potter, Robert B. & Nortcliff, Stephen, 2011. "Water reuse for irrigation in Jordan: Perceptions of water quality among farmers," Agricultural Water Management, Elsevier, vol. 98(5), pages 847-854, March.
    10. Winfrida Mayilla & Bernard Keraita & Helena Ngowi & Flemming Konradsen & Flavianus Magayane, 2017. "Perceptions of using low-quality irrigation water in vegetable production in Morogoro, Tanzania," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(1), pages 165-183, February.
    11. Zhou, Bo & Li, Yunkai & Song, Peng & Xu, Zhenci & Bralts, Vincent, 2016. "A kinetic model for biofilm growth inside non-PC emitters under reclaimed water drip irrigation," Agricultural Water Management, Elsevier, vol. 168(C), pages 23-34.
    12. repec:spr:endesu:v:20:y:2018:i:1:d:10.1007_s10668-016-9895-3 is not listed on IDEAS
    13. Amerasinghe, Priyani H. & Bhardwaj, Rajendra Mohan & Scott, Christopher A. & Jella, Kiran & Marshall, Fiona, 2013. "Urban wastewater and agricultural reuse challenges in India," IWMI Reports 147104, International Water Management Institute.
    14. Shelton, D.R. & Kiefer, L.A. & Pachepsky, Y.A. & Martinez, G. & McCarty, G.W. & Dao, T.H., 2013. "Comparison of microbial quality of irrigation water delivered in aluminum and PVC pipes," Agricultural Water Management, Elsevier, vol. 129(C), pages 145-151.
    15. Tunc, Talip & Sahin, Ustun, 2015. "The changes in the physical and hydraulic properties of a loamy soil under irrigation with simpler-reclaimed wastewaters," Agricultural Water Management, Elsevier, vol. 158(C), pages 213-224.
    16. Minhas, P.S. & Khajanchi-Lal, & Yadav, R.K. & Dubey, S.K. & Chaturvedi, R.K., 2015. "Long term impact of waste water irrigation and nutrient rates: I. Performance, sustainability and produce quality of peri urban cropping systems," Agricultural Water Management, Elsevier, vol. 156(C), pages 100-109.
    17. Raja, Shameem & Cheema, Hafiza Masooma Naseer & Babar, Shaista & Khan, Asif Ali & Murtaza, Ghulam & Aslam, Usman, 2015. "Socio-economic background of wastewater irrigation and bioaccumulation of heavy metals in crops and vegetables," Agricultural Water Management, Elsevier, vol. 158(C), pages 26-34.
    18. Sato, Toshio & Qadir, Manzoor & Yamamoto, Sadahiro & Endo, Tsuneyoshi & Zahoor, Ahmad, 2013. "Global, regional, and country level need for data on wastewater generation, treatment, and use," Agricultural Water Management, Elsevier, vol. 130(C), pages 1-13.
    19. Mojid, M.A. & Wyseure, G.C.L. & Biswas, S.K. & Hossain, A.B.M.Z., 2010. "Farmers' perceptions and knowledge in using wastewater for irrigation at twelve peri-urban areas and two sugar mill areas in Bangladesh," Agricultural Water Management, Elsevier, vol. 98(1), pages 79-86, December.
    20. Hu, Hong-you & Zhang, Linus & Wang, YuanPeng, 2016. "Crop development based assessment framework for guiding the conjunctive use of fresh water and sewage water for cropping practice—A case study," Agricultural Water Management, Elsevier, vol. 169(C), pages 98-105.
    21. Genia Nagara & Wei-Haur Lam & Nasha Lee & Faridah Othman & Md Shaaban, 2015. "Comparative SWOT Analysis for Water Solutions in Asia and Africa," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 125-138, January.
    22. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    23. L. Allen-Scott & J. Hatfield & L. McIntyre, 2014. "A scoping review of unintended harm associated with public health interventions: towards a typology and an understanding of underlying factors," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 59(1), pages 3-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:97:y:2010:i:4:p:561-568. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/agwat .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.