IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v295y2024ics0378377424000908.html
   My bibliography  Save this article

Optimizing actual evapotranspiration simulation to identify evapotranspiration partitioning variations: A fusion of physical processes and machine learning techniques

Author

Listed:
  • Jiang, Xiaoman
  • Wang, Yuntao
  • A., Yinglan
  • Wang, Guoqiang
  • Zhang, Xiaojing
  • Ma, Guangwen
  • Duan, Limin
  • Liu, Kai

Abstract

Evapotranspiration (ET) serves as a pivotal metric for studying ecohydrological processes. Its dynamics are intricately linked to the interplay among water balance, energy balance, and land use. However, the precise estimation of ET at a regional scale, coupled with a comprehensive understanding of its response to changes in water, heat, and vegetation factors, presents an ongoing challenge. In this study, we assessed the necessity to refine soil evaporation simulations in arid and semiarid regions. Subsequently, we introduced the random forest algorithm to optimize the soil evaporation module of the Priestley-Taylor Jet Propulsion Laboratory (PT-JPL) model to enable a more accurate prediction of ET. Then, we quantitatively explored the correlation between ET and pertinent factors, such as soil moisture, solar radiation, and the normalized difference vegetation index (NDVI) in the Inner Mongolia section of the Yellow River Basin (IMSYRB), which is a typical arid and semiarid region. The findings underscore that soil evaporation is the predominant constituent of ET in the IMSYRB. Moreover, soil moisture, as opposed to relative humidity, better represent the near-surface moisture conditions within the study area. The refined model (PT-JPL-RF) exhibited enhanced simulation performance at both individual stations and in the overall region for ET. Furthermore, the application of the PT-JPL-RF model for scrutinizing the spatiotemporal ET variations in the study area revealed an average ET of 250 mm over the past four decades. Since 1982, a fluctuating upward trend of 0.99 mm/year has been observed. Spatially, ET exhibits an eastward distribution, with elevated values in the eastern sectors compared to those in the western regions, particularly in the Big Black River Basin (296 mm). Vegetation was the primary factor influencing ET variations in the IMSYRB, contributing to an annual increase by 1.58 mm. These findings demonstrate the benefits of integrating machine learning algorithms with physical models and provide a practical example for accurately simulating and predicting ET across diverse regions.

Suggested Citation

  • Jiang, Xiaoman & Wang, Yuntao & A., Yinglan & Wang, Guoqiang & Zhang, Xiaojing & Ma, Guangwen & Duan, Limin & Liu, Kai, 2024. "Optimizing actual evapotranspiration simulation to identify evapotranspiration partitioning variations: A fusion of physical processes and machine learning techniques," Agricultural Water Management, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:agiwat:v:295:y:2024:i:c:s0378377424000908
    DOI: 10.1016/j.agwat.2024.108755
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424000908
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108755?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:295:y:2024:i:c:s0378377424000908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.