IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v292y2024ics0378377423005280.html
   My bibliography  Save this article

Climate-smart irrigation strategy can mitigate agricultural water consumption while ensuring food security under a changing climate

Author

Listed:
  • Li, Mengna
  • Zhou, Shiwei
  • Shen, Shuaijie
  • Wang, Jiale
  • Yang, Yuhao
  • Wu, Yangzhong
  • Chen, Fu
  • Lei, Yongdeng

Abstract

North China Plain suffers from the world’s most severe water scarcity and groundwater depletion due to intensive irrigation for agricultural production. It is imperative to reduce irrigation water consumption while safeguarding crop production and food security. This study conducted a quantitative analysis with deficit irrigation strategies for winter wheat using a water-driven AquaCrop model. After model calibration and validation with field experimental data, we analyzed the irrigation water demand, crop yield, and water productivity (WP) of winter wheat under various deficit irrigation scenarios. A set of optimal irrigation schedules were proposed for different climate years, which significantly mitigated irrigation water usage while sustaining high yields and WPs. The results indicated that despite the irrigation water demand of winter wheat under the future climate scenario was slightly higher than that in the historical period, their crop water sensitive periods (reviving, jointing, and flowering) remained the same. Therefore, we recommended adopting the same deficit irrigation schedules for the historical and future periods. In wet years, adopting a 50% deficit irrigation strategy only reduced crop yields by less than 5% compared with full irrigation, but it saved 1000–1100 m3 of water per hectare and contributed a WP higher than 1.88 kg/m3. While in normal and dry years, an optimal 25% deficit irrigation could sustain over 96% of the maximum yield, meanwhile it could save 650–800 m3/ha of water and achieve almost the same WP as full irrigation. These climate-smart irrigation strategies adapting to diverse climatic conditions largely mitigate agricultural water consumption while maximizing crop productivity and water use efficiency, which are essential for achieving precision irrigation and sustainable water management under a changing climate.

Suggested Citation

  • Li, Mengna & Zhou, Shiwei & Shen, Shuaijie & Wang, Jiale & Yang, Yuhao & Wu, Yangzhong & Chen, Fu & Lei, Yongdeng, 2024. "Climate-smart irrigation strategy can mitigate agricultural water consumption while ensuring food security under a changing climate," Agricultural Water Management, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:agiwat:v:292:y:2024:i:c:s0378377423005280
    DOI: 10.1016/j.agwat.2023.108663
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423005280
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108663?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:292:y:2024:i:c:s0378377423005280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.