IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p10503-d1186255.html
   My bibliography  Save this article

Improving Wheat Yield and Water-Use Efficiency by Optimizing Irrigations in Northern China

Author

Listed:
  • Xin Zhang

    (College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, China
    State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071000, China
    These authors contributed equally to this work.)

  • Jianheng Zhang

    (College of Horticulture, Hebei Agricultural University, Baoding 071000, China
    These authors contributed equally to this work.)

  • Jiaxin Xue

    (State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071000, China)

  • Guiyan Wang

    (College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding 071000, China
    State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071000, China
    Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding 071000, China
    Key Laboratory of North China Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Baoding 071001, China)

Abstract

Achieving the goal of increasing both crop yield and water-use efficiency with a better irrigation regime is a major challenge in semi-arid areas. In this study, we presented a two-season field experiment (October 2018–June 2019 and October 2019–June 2020) that considered drought stresses, i.e., no irrigation (W0), irrigated in jointing (W1), both in jointing and flowering (W2) after re-greening, and wheat varieties (S086; J22). The results showed that a 45.5% excess of irrigation water input did not promote wheat yield (W1 vs. W2). S086 was beneficial for the usage of soil water consumption under a low amount of irrigation water in both seasons. In addition, irrigation positively affected the activities of superoxide dismutase and catalase in flag leaves ( p < 0.05). A decrease in irrigation helped to increase the concentrations of soluble sugar and proline and decrease the amount of malondialdehyde content for S086. For the water- and irrigation-water-use efficiency, W1 was significantly increased by 20.6–21.7% and 38.3–39.3% in 2018–2019 and 23.4–24.4% and 43.8–44.7% in 2019–2020, respectively, as compared to W2. Additionally, a higher yield for S086 than J22 was found under deficit irrigation. Consequently, our study suggested that the S086 variety combined with a total amount of irrigation water of 165 mm might be recommended to meet the win–win goal of high crop yields and water-use efficiency for reducing ground water depletion in the future.

Suggested Citation

  • Xin Zhang & Jianheng Zhang & Jiaxin Xue & Guiyan Wang, 2023. "Improving Wheat Yield and Water-Use Efficiency by Optimizing Irrigations in Northern China," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10503-:d:1186255
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/10503/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/10503/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jha, Shiva K. & Gao, Yang & Liu, Hao & Huang, Zhongdong & Wang, Guangshuai & Liang, Yueping & Duan, Aiwang, 2017. "Root development and water uptake in winter wheat under different irrigation methods and scheduling for North China," Agricultural Water Management, Elsevier, vol. 182(C), pages 139-150.
    2. Lima, F.A. & Córcoles, J.I. & Tarjuelo, J.M. & Martínez-Romero, A., 2019. "Model for management of an on-demand irrigation network based on irrigation scheduling of crops to minimize energy use (Part II): Financial impact of regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 215(C), pages 44-54.
    3. Yu, Liuyang & Zhao, Xining & Gao, Xiaodong & Siddique, Kadambot H.M., 2020. "Improving/maintaining water-use efficiency and yield of wheat by deficit irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 228(C).
    4. Xu, Jiatun & Cai, Huanjie & Wang, Xiaoyun & Ma, Chenguang & Lu, Yajun & Ding, Yibo & Wang, Xiaowen & Chen, Hui & Wang, Yunfei & Saddique, Qaisar, 2020. "Exploring optimal irrigation and nitrogen fertilization in a winter wheat-summer maize rotation system for improving crop yield and reducing water and nitrogen leaching," Agricultural Water Management, Elsevier, vol. 228(C).
    5. Kumar Jha, Shiva & Ramatshaba, Tefo Steve & Wang, Guangshuai & Liang, Yueping & Liu, Hao & Gao, Yang & Duan, Aiwang, 2019. "Response of growth, yield and water use efficiency of winter wheat to different irrigation methods and scheduling in North China Plain," Agricultural Water Management, Elsevier, vol. 217(C), pages 292-302.
    6. Ierna, Anita & Mauromicale, Giovanni, 2012. "Tuber yield and irrigation water productivity in early potatoes as affected by irrigation regime," Agricultural Water Management, Elsevier, vol. 115(C), pages 276-284.
    7. Tari, Ali Fuat, 2016. "The effects of different deficit irrigation strategies on yield, quality, and water-use efficiencies of wheat under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 167(C), pages 1-10.
    8. Zhao, Jie & Han, Tong & Wang, Chong & Jia, Hao & Worqlul, Abeyou W. & Norelli, Nicole & Zeng, Zhaohai & Chu, Qingquan, 2020. "Optimizing irrigation strategies to synchronously improve the yield and water productivity of winter wheat under interannual precipitation variability in the North China Plain," Agricultural Water Management, Elsevier, vol. 240(C).
    9. Li, Jinpeng & Zhang, Zhen & Liu, Yang & Yao, Chunsheng & Song, Wenyue & Xu, Xuexin & Zhang, Meng & Zhou, Xiaonan & Gao, Yanmei & Wang, Zhimin & Sun, Zhencai & Zhang, Yinghua, 2019. "Effects of micro-sprinkling with different irrigation amount on grain yield and water use efficiency of winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    10. Si, Zhuanyun & Zain, Muhammad & Mehmood, Faisal & Wang, Guangshuai & Gao, Yang & Duan, Aiwang, 2020. "Effects of nitrogen application rate and irrigation regime on growth, yield, and water-nitrogen use efficiency of drip-irrigated winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 231(C).
    11. Liu, Yang & Zhang, Xueling & Xi, Luoyan & Liao, Yuncheng & Han, Juan, 2020. "Ridge-furrow planting promotes wheat grain yield and water productivity in the irrigated sub-humid region of China," Agricultural Water Management, Elsevier, vol. 231(C).
    12. Deng, Xi-Ping & Shan, Lun & Zhang, Heping & Turner, Neil C., 2006. "Improving agricultural water use efficiency in arid and semiarid areas of China," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 23-40, February.
    13. Rathore, Vijay Singh & Nathawat, Narayan Singh & Bhardwaj, Seema & Sasidharan, Renjith Puthiyedathu & Yadav, Bhagirath Mal & Kumar, Mahesh & Santra, Priyabrata & Yadava, Narendra Dev & Yadav, Om Parka, 2017. "Yield, water and nitrogen use efficiencies of sprinkler irrigated wheat grown under different irrigation and nitrogen levels in an arid region," Agricultural Water Management, Elsevier, vol. 187(C), pages 232-245.
    14. Fang, Q. & Ma, L. & Yu, Q. & Ahuja, L.R. & Malone, R.W. & Hoogenboom, G., 2010. "Irrigation strategies to improve the water use efficiency of wheat-maize double cropping systems in North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1165-1174, August.
    15. van Oort, P.A.J. & Wang, G. & Vos, J. & Meinke, H. & Li, B.G. & Huang, J.K. & van der Werf, W., 2016. "Towards groundwater neutral cropping systems in the Alluvial Fans of the North China Plain," Agricultural Water Management, Elsevier, vol. 165(C), pages 131-140.
    16. Mu, Qing & Cai, Huanjie & Sun, Shikun & Wen, Shanshan & Xu, Jiatun & Dong, Mengqi & Saddique, Qaisar, 2021. "The physiological response of winter wheat under short-term drought conditions and the sensitivity of different indices to soil water changes," Agricultural Water Management, Elsevier, vol. 243(C).
    17. Li, Jinpeng & Wang, Yunqi & Zhang, Meng & Liu, Yang & Xu, Xuexin & Lin, Gang & Wang, Zhimin & Yang, Youming & Zhang, Yinghua, 2019. "Optimized micro-sprinkling irrigation scheduling improves grain yield by increasing the uptake and utilization of water and nitrogen during grain filling in winter wheat," Agricultural Water Management, Elsevier, vol. 211(C), pages 59-69.
    18. Sun, Qing & Wang, Yaosheng & Chen, Geng & Yang, Hui & Du, Taisheng, 2018. "Water use efficiency was improved at leaf and yield levels of tomato plants by continuous irrigation using semipermeable membrane," Agricultural Water Management, Elsevier, vol. 203(C), pages 430-437.
    19. Liu, Xiaogang & Qi, Yuntao & Li, Fusheng & Yang, Qiliang & Yu, Liming, 2018. "Impacts of regulated deficit irrigation on yield, quality and water use efficiency of Arabica coffee under different shading levels in dry and hot regions of southwest China," Agricultural Water Management, Elsevier, vol. 204(C), pages 292-300.
    20. Sun, Hongyong & Shen, Yanjun & Yu, Qiang & Flerchinger, Gerald N. & Zhang, Yongqiang & Liu, Changming & Zhang, Xiying, 2010. "Effect of precipitation change on water balance and WUE of the winter wheat-summer maize rotation in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1139-1145, August.
    21. Ali, Shahzad & Xu, Yueyue & Ma, Xiangcheng & Ahmad, Irshad & Manzoor, & Jia, Qianmin & Akmal, Muhammad & Hussain, Zahid & Arif, Muhammad & Cai, Tie & Zhang, Jiahua & Jia, Zhikuan, 2019. "Deficit irrigation strategies to improve winter wheat productivity and regulating root growth under different planting patterns," Agricultural Water Management, Elsevier, vol. 219(C), pages 1-11.
    22. Fan, Yanli & Liu, Junmei & Zhao, Jiatao & Ma, Yuzhao & Li, Quanqi, 2019. "Effects of delayed irrigation during the jointing stage on the photosynthetic characteristics and yield of winter wheat under different planting patterns," Agricultural Water Management, Elsevier, vol. 221(C), pages 371-376.
    23. Liu, Xiuwei & Shao, Liwei & Sun, Hongyong & Chen, Suying & Zhang, Xiying, 2013. "Responses of yield and water use efficiency to irrigation amount decided by pan evaporation for winter wheat," Agricultural Water Management, Elsevier, vol. 129(C), pages 173-180.
    24. Zhang, Haowen & Liang, Qing & Peng, Zhengping & Zhao, Yi & Tan, Yuechen & Zhang, Xin & Bol, Roland, 2023. "Response of greenhouse gases emissions and yields to irrigation and straw practices in wheat-maize cropping system," Agricultural Water Management, Elsevier, vol. 282(C).
    25. Pardo, J.J. & Martínez-Romero, A. & Léllis, B.C. & Tarjuelo, J.M. & Domínguez, A., 2020. "Effect of the optimized regulated deficit irrigation methodology on water use in barley under semiarid conditions," Agricultural Water Management, Elsevier, vol. 228(C).
    26. Payero, José O. & Tarkalson, David D. & Irmak, Suat & Davison, Don & Petersen, James L., 2008. "Effect of irrigation amounts applied with subsurface drip irrigation on corn evapotranspiration, yield, water use efficiency, and dry matter production in a semiarid climate," Agricultural Water Management, Elsevier, vol. 95(8), pages 895-908, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Firouzabadi, Ali Ghadami & Baghani, Javad & Jovzi, Mehdi & Albaji, Mohammad, 2021. "Effects of wheat row spacing layout and drip tape spacing on yield and water productivity in sandy clay loam soil in a semi-arid region," Agricultural Water Management, Elsevier, vol. 251(C).
    2. Wang, Bo & van Dam, Jos & Yang, Xiaolin & Ritsema, Coen & Du, Taisheng & Kang, Shaozhong, 2023. "Reducing water productivity gap by optimizing irrigation regime for winter wheat-summer maize system in the North China Plain," Agricultural Water Management, Elsevier, vol. 280(C).
    3. Lu, Junsheng & Geng, Chenming & Cui, Xiaolu & Li, Mengyue & Chen, Shuaihong & Hu, Tiantian, 2021. "Response of drip fertigated wheat-maize rotation system on grain yield, water productivity and economic benefits using different water and nitrogen amounts," Agricultural Water Management, Elsevier, vol. 258(C).
    4. Su, Han & Sun, Hongyong & Dong, Xinliang & Chen, Pei & Zhang, Xuejia & Tian, Liu & Liu, Xiaojing & Wang, Jintao, 2021. "Did manure improve saline water irrigation threshold of winter wheat? A 3-year field investigation," Agricultural Water Management, Elsevier, vol. 258(C).
    5. Wang, Xiquan & Nie, Jiangwen & Wang, Peixin & Zhao, Jie & Yang, Yadong & Wang, Shang & Zeng, Zhaohai & Zang, Huadong, 2021. "Does the replacement of chemical fertilizer nitrogen by manure benefit water use efficiency of winter wheat – summer maize systems?," Agricultural Water Management, Elsevier, vol. 243(C).
    6. Li, Haoran & Wang, Hongguang & Fang, Qin & Jia, Bin & Li, Dongxiao & He, Jianning & Li, Ruiqi, 2023. "Effects of irrigation and nitrogen application on NO3--N distribution in soil, nitrogen absorption, utilization and translocation by winter wheat," Agricultural Water Management, Elsevier, vol. 276(C).
    7. Yang, Danni & Li, Sien & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Mao, Xiaomin & Tong, Ling & Hao, Xinmei & Ding, Risheng & Niu, Jun, 2020. "Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    8. Muhammad Zain & Zhuanyun Si & Sen Li & Yang Gao & Faisal Mehmood & Shafeeq-Ur Rahman & Abdoul Kader Mounkaila Hamani & Aiwang Duan, 2021. "The Coupled Effects of Irrigation Scheduling and Nitrogen Fertilization Mode on Growth, Yield and Water Use Efficiency in Drip-Irrigated Winter Wheat," Sustainability, MDPI, vol. 13(5), pages 1-17, March.
    9. Asmamaw, Desale Kidane & Janssens, Pieter & Dessie, Mekete & Tilahun, Seifu A. & Adgo, Enyew & Nyssen, Jan & Walraevens, Kristine & Assaye, Habtamu & Yenehun, Alemu & Nigate, Fenta & Cornelis, Wim M., 2023. "Effect of deficit irrigation and soil fertility management on wheat production and water productivity in the Upper Blue Nile Basin, Ethiopia," Agricultural Water Management, Elsevier, vol. 277(C).
    10. Lu, Junsheng & Xiang, Youzhen & Fan, Junliang & Zhang, Fucang & Hu, Tiantian, 2021. "Sustainable high grain yield, nitrogen use efficiency and water productivity can be achieved in wheat-maize rotation system by changing irrigation and fertilization strategy," Agricultural Water Management, Elsevier, vol. 258(C).
    11. Xiaoli Shi & Wenjiao Shi & Na Dai & Minglei Wang, 2022. "Optimal Irrigation under the Constraint of Water Resources for Winter Wheat in the North China Plain," Agriculture, MDPI, vol. 12(12), pages 1-15, November.
    12. Feng, Xuyu & Liu, Haijun & Feng, Dongxue & Tang, Xiaopei & Li, Lun & Chang, Jie & Tanny, Josef & Liu, Ronghao, 2023. "Quantifying winter wheat evapotranspiration and crop coefficients under sprinkler irrigation using eddy covariance technology in the North China Plain," Agricultural Water Management, Elsevier, vol. 277(C).
    13. Yao, Chunsheng & Li, Jinpeng & Zhang, Zhen & Liu, Ying & Wang, Zhimin & Sun, Zhencai & Zhang, Yinghua, 2023. "Improving wheat yield, quality and resource utilization efficiency through nitrogen management based on micro-sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 282(C).
    14. Lu, Junsheng & Hu, Tiantian & Geng, Chenming & Cui, Xiaolu & Fan, Junliang & Zhang, Fucang, 2021. "Response of yield, yield components and water-nitrogen use efficiency of winter wheat to different drip fertigation regimes in Northwest China," Agricultural Water Management, Elsevier, vol. 255(C).
    15. Mu, Qing & Xu, Jiatun & Yu, Miao & Guo, Zijian & Dong, Mengqi & Cao, Yuxin & Zhang, Suiqi & Sun, Shikun & Cai, Huanjie, 2022. "Physiological response of winter wheat (Triticum aestivum L.) during vegetative growth to gradual, persistent and intermittent drought," Agricultural Water Management, Elsevier, vol. 274(C).
    16. Zeng, Ruiyun & Lin, Xiaomao & Welch, Stephen M. & Yang, Shanshan & Huang, Na & Sassenrath, Gretchen F. & Yao, Fengmei, 2023. "Impact of water deficit and irrigation management on winter wheat yield in China," Agricultural Water Management, Elsevier, vol. 287(C).
    17. Zeng, Ruiyun & Yao, Fengmei & Zhang, Sha & Yang, Shanshan & Bai, Yun & Zhang, Jiahua & Wang, Jingwen & Wang, Xin, 2021. "Assessing the effects of precipitation and irrigation on winter wheat yield and water productivity in North China Plain," Agricultural Water Management, Elsevier, vol. 256(C).
    18. Singh, Manpreet & Singh, Sukhbir & Deb, Sanjit & Ritchie, Glen, 2023. "Root distribution, soil water depletion, and water productivity of sweet corn under deficit irrigation and biochar application," Agricultural Water Management, Elsevier, vol. 279(C).
    19. Wan, Wenliang & Zhao, Yanhui & Wang, Zijian & Li, Liulong & Jing, Jianguo & Lv, Zhaoyan & Diao, Ming & Li, Weihua & Jiang, Guiying & Wang, Xiao & Jiang, Dong, 2022. "Mitigation fluctuations of inter-row water use efficiency of spring wheat via narrowing row space in enlarged lateral space drip irrigation systems," Agricultural Water Management, Elsevier, vol. 274(C).
    20. Wang, Chong & Zhao, Jiongchao & Feng, Yupeng & Shang, Mengfei & Bo, Xiaozhi & Gao, Zhenzhen & Chen, Fu & Chu, Qingquan, 2021. "Optimizing tillage method and irrigation schedule for greenhouse gas mitigation, yield improvement, and water conservation in wheat–maize cropping systems," Agricultural Water Management, Elsevier, vol. 248(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10503-:d:1186255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.