IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v221y2019icp371-376.html
   My bibliography  Save this article

Effects of delayed irrigation during the jointing stage on the photosynthetic characteristics and yield of winter wheat under different planting patterns

Author

Listed:
  • Fan, Yanli
  • Liu, Junmei
  • Zhao, Jiatao
  • Ma, Yuzhao
  • Li, Quanqi

Abstract

To study the water-saving and high-yielding planting pattern in the North China Plain (NCP), a conventional planting pattern (C) and wide-precision planting pattern (W) were adopted during the 2015–2016 and 2016–2017 winter wheat growing seasons. For each planting pattern, the plants were provided with 60 mm irrigation either during the jointing stage or 10 days after the jointing stage. During both growing seasons, the chlorophyll content index (CCI) in the flag leaves, maximum photochemical efficiency (Fv/Fm), photosynthetic rate (Pn), transpiration rate (Tr), and grain yield (GY) of winter wheat were measured. The results showed that at the heading and flowering stages, W significantly increased the CCI and Fv/Fm in flag leaves. In both growing seasons, the highest value for both CCI and Fv/Fm was observed during the filling stage in W treatment with 60 mm irrigation 10 days after the jointing stage (WI2). The trend for Pn was consistent with the change in Tr, and both reached the maximum value at the flowering stage. At the filling stage, the leaf water use efficiency (WUEL) in WI2 reached the maximum value. Delayed irrigation at the jointing stage significantly increased the number of spikes as well as the kernel numbers per spike in W; as a result, the winter wheat grain yield was significantly increased in WI2. The results indicate that the use of W in combination with 60 mm irrigation 10 days after the jointing stage is an optimal method for winter wheat production in NCP.

Suggested Citation

  • Fan, Yanli & Liu, Junmei & Zhao, Jiatao & Ma, Yuzhao & Li, Quanqi, 2019. "Effects of delayed irrigation during the jointing stage on the photosynthetic characteristics and yield of winter wheat under different planting patterns," Agricultural Water Management, Elsevier, vol. 221(C), pages 371-376.
  • Handle: RePEc:eee:agiwat:v:221:y:2019:i:c:p:371-376
    DOI: 10.1016/j.agwat.2019.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419302197
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    2. Ma, Shou-Chen & Duan, Ai-Wang & Wang, Rui & Guan, Zhong-Mei & Yang, Shen-Jiao & Ma, Shou-Tian & Shao, Yun, 2015. "Root-sourced signal and photosynthetic traits, dry matter accumulation and remobilization, and yield stability in winter wheat as affected by regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 148(C), pages 123-129.
    3. Kang, Shaozhong & Zhang, Lu & Liang, Yinli & Hu, Xiaotao & Cai, Huanjie & Gu, Binjie, 2002. "Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 55(3), pages 203-216, June.
    4. Sun, Qing & Wang, Yaosheng & Chen, Geng & Yang, Hui & Du, Taisheng, 2018. "Water use efficiency was improved at leaf and yield levels of tomato plants by continuous irrigation using semipermeable membrane," Agricultural Water Management, Elsevier, vol. 203(C), pages 430-437.
    5. Liu, Haijun & Yu, Lipeng & Luo, Yu & Wang, Xiangping & Huang, Guanhua, 2011. "Responses of winter wheat (Triticum aestivum L.) evapotranspiration and yield to sprinkler irrigation regimes," Agricultural Water Management, Elsevier, vol. 98(4), pages 483-492, February.
    6. Yang, Yonghui & Ding, Jinli & Zhang, Yunhong & Wu, Jicheng & Zhang, Jiemei & Pan, Xiaoying & Gao, Cuimin & Wang, Yue & He, Fang, 2018. "Effects of tillage and mulching measures on soil moisture and temperature, photosynthetic characteristics and yield of winter wheat," Agricultural Water Management, Elsevier, vol. 201(C), pages 299-308.
    7. Li, Quanqi & Bian, Chengyue & Liu, Xinhui & Ma, Changjian & Liu, Quanru, 2015. "Winter wheat grain yield and water use efficiency in wide-precision planting pattern under deficit irrigation in North China Plain," Agricultural Water Management, Elsevier, vol. 153(C), pages 71-76.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Zhenxing & Zhang, Wenying & Liu, Xiuwei & Wang, Qingsuo & Liu, Binhui & Mei, Xurong, 2024. "Grain yield and water productivity of winter wheat controlled by irrigation regime and manure substitution in the North China Plain," Agricultural Water Management, Elsevier, vol. 295(C).
    2. Wang, Bo & van Dam, Jos & Yang, Xiaolin & Ritsema, Coen & Du, Taisheng & Kang, Shaozhong, 2023. "Reducing water productivity gap by optimizing irrigation regime for winter wheat-summer maize system in the North China Plain," Agricultural Water Management, Elsevier, vol. 280(C).
    3. Yang, Lei & Fang, Xiangyang & Zhou, Jie & Zhao, Jie & Hou, Xiqing & Yang, Yadong & Zang, Huadong & Zeng, Zhaohai, 2024. "Optimal irrigation for wheat-maize rotation depending on precipitation in the North China Plain: Evidence from a four-year experiment," Agricultural Water Management, Elsevier, vol. 294(C).
    4. Wei, Shiyu & Kuang, Naikun & Jiao, Fengli & Zong, Rui & Li, Quanqi, 2023. "Exploring the effects of subsoiling tillage under various irrigation regimes on the evapotranspiration and crop water productivity of winter wheat using RZWQM2," Agricultural Water Management, Elsevier, vol. 289(C).
    5. Jiao, Fengli & Hong, Shengzhe & Cui, Jichao & Zhang, Qingfen & Li, Ming & Shi, Ruilin & Han, Huifang & Li, Quanqi, 2022. "Subsoiling combined with irrigation improves carbon emission and crop water productivity of winter wheat in North China Plain," Agricultural Water Management, Elsevier, vol. 269(C).
    6. Li, Yupeng & Gu, Xiaobo & Li, Yuannong & Fang, Heng & Chen, Pengpeng, 2023. "Ridge-furrow mulching combined with appropriate nitrogen rate for enhancing photosynthetic efficiency, yield and water use efficiency of summer maize in a semi-arid region of China," Agricultural Water Management, Elsevier, vol. 287(C).
    7. Yu, Shaobo & Khan, Shahbaz & Mo, Fei & Ren, Aixia & Lin, Wen & Feng, Yu & Dong, Shifeng & Ren, Jie & Wang, Wenxiang & Noor, Hafeez & Yang, Zhenping & Sun, Min & Gao, Zhiqiang, 2021. "Determining optimal nitrogen input rate on the base of fallow season precipitation to achieve higher crop water productivity and yield," Agricultural Water Management, Elsevier, vol. 246(C).
    8. Xiao, Chao & Ji, Qingyuan & Zhang, Fucang & Li, Yi & Fan, Junliang & Hou, Xianghao & Yan, Fulai & Liu, Xiaoqiang & Gong, Kaiyuan, 2023. "Effects of various soil water potential thresholds for drip irrigation on soil salinity, seed cotton yield and water productivity of cotton in northwest China," Agricultural Water Management, Elsevier, vol. 279(C).
    9. Xin Zhang & Jianheng Zhang & Jiaxin Xue & Guiyan Wang, 2023. "Improving Wheat Yield and Water-Use Efficiency by Optimizing Irrigations in Northern China," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
    10. Zong, Rui & Wang, Zhenhua & Zhang, Jinzhu & Li, Wenhao, 2021. "The response of photosynthetic capacity and yield of cotton to various mulching practices under drip irrigation in Northwest China," Agricultural Water Management, Elsevier, vol. 249(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiquan & Nie, Jiangwen & Wang, Peixin & Zhao, Jie & Yang, Yadong & Wang, Shang & Zeng, Zhaohai & Zang, Huadong, 2021. "Does the replacement of chemical fertilizer nitrogen by manure benefit water use efficiency of winter wheat – summer maize systems?," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Eric Njuki & Boris E. Bravo-Ureta, 2019. "Examining irrigation productivity in U.S. agriculture using a single-factor approach," Journal of Productivity Analysis, Springer, vol. 51(2), pages 125-136, June.
    3. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    4. Fazlullah Akhtar & Bernhard Tischbein & Usman Awan, 2013. "Optimizing Deficit Irrigation Scheduling Under Shallow Groundwater Conditions in Lower Reaches of Amu Darya River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3165-3178, June.
    5. Kumar Jha, Shiva & Ramatshaba, Tefo Steve & Wang, Guangshuai & Liang, Yueping & Liu, Hao & Gao, Yang & Duan, Aiwang, 2019. "Response of growth, yield and water use efficiency of winter wheat to different irrigation methods and scheduling in North China Plain," Agricultural Water Management, Elsevier, vol. 217(C), pages 292-302.
    6. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2018. "Determining water use efficiency of wheat and cotton: A meta-regression analysis," Agricultural Water Management, Elsevier, vol. 199(C), pages 48-60.
    7. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2016. "Determining water use efficiency for wheat and cotton: A meta-regression analysis," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236059, Agricultural and Applied Economics Association.
    8. Li, Yangyang & Liu, Ningning & Fan, Hua & Su, Jixia & Fei, Cong & Wang, Kaiyong & Ma, Fuyu & Kisekka, Isaya, 2019. "Effects of deficit irrigation on photosynthesis, photosynthate allocation, and water use efficiency of sugar beet," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    9. Mustafa, S.M.T. & Vanuytrecht, E. & Huysmans, M., 2017. "Combined deficit irrigation and soil fertility management on different soil textures to improve wheat yield in drought-prone Bangladesh," Agricultural Water Management, Elsevier, vol. 191(C), pages 124-137.
    10. Liu, E.K. & Mei, X.R. & Yan, C.R. & Gong, D.Z. & Zhang, Y.Q., 2016. "Effects of water stress on photosynthetic characteristics, dry matter translocation and WUE in two winter wheat genotypes," Agricultural Water Management, Elsevier, vol. 167(C), pages 75-85.
    11. Ali, Shahzad & Xu, Yueyue & Jia, Qianmin & Ahmad, Irshad & Wei, Ting & Ren, Xiaolong & Zhang, Peng & Din, Ruixia & Cai, Tie & Jia, Zhikuan, 2018. "Cultivation techniques combined with deficit irrigation improves winter wheat photosynthetic characteristics, dry matter translocation and water use efficiency under simulated rainfall conditions," Agricultural Water Management, Elsevier, vol. 201(C), pages 207-218.
    12. Jiao, Fengli & Ding, Risheng & Du, Taisheng & Kang, Jian & Tong, Ling & Gao, Jia & Shao, Jie, 2024. "Multi-growth stage regulated deficit irrigation improves maize water productivity in an arid region of China," Agricultural Water Management, Elsevier, vol. 297(C).
    13. Shrestha, Nirman & Raes, Dirk & Vanuytrecht, Eline & Sah, Shrawan Kumar, 2013. "Cereal yield stabilization in Terai (Nepal) by water and soil fertility management modeling," Agricultural Water Management, Elsevier, vol. 122(C), pages 53-62.
    14. Arman Ganji & Sara Kaviani, 2013. "Probability Analysis of Crop Water Stress Index: An Application of Double Bounded Density Function (DB-CDF)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3791-3802, August.
    15. Zhang, Yanqun & Wang, Jiandong & Gong, Shihong & Xu, Di & Sui, Juan, 2017. "Nitrogen fertigation effect on photosynthesis, grain yield and water use efficiency of winter wheat," Agricultural Water Management, Elsevier, vol. 179(C), pages 277-287.
    16. Komlan Koudahe & Aleksey Y. Sheshukov & Jonathan Aguilar & Koffi Djaman, 2021. "Irrigation-Water Management and Productivity of Cotton: A Review," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    17. Stepanovic, Strahinja & Rudnick, Daran & Kruger, Greg, 2021. "Impact of maize hybrid selection on water productivity under deficit irrigation in semiarid western Nebraska," Agricultural Water Management, Elsevier, vol. 244(C).
    18. Singh, Sukhbir & Angadi, Sangamesh V. & Grover, Kulbhushan K. & Hilaire, Rolston St. & Begna, Sultan, 2016. "Effect of growth stage based irrigation on soil water extraction and water use efficiency of spring safflower cultivars," Agricultural Water Management, Elsevier, vol. 177(C), pages 432-439.
    19. Yang, Xin & Bornø, Marie Louise & Wei, Zhenhua & Liu, Fulai, 2021. "Combined effect of partial root drying and elevated atmospheric CO2 on the physiology and fruit quality of two genotypes of tomato plants with contrasting endogenous ABA levels," Agricultural Water Management, Elsevier, vol. 254(C).
    20. Andarzian, B. & Bannayan, M. & Steduto, P. & Mazraeh, H. & Barati, M.E. & Barati, M.A. & Rahnama, A., 2011. "Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran," Agricultural Water Management, Elsevier, vol. 100(1), pages 1-8.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:221:y:2019:i:c:p:371-376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.