IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v243y2021ics0378377419321080.html
   My bibliography  Save this article

Does the replacement of chemical fertilizer nitrogen by manure benefit water use efficiency of winter wheat – summer maize systems?

Author

Listed:
  • Wang, Xiquan
  • Nie, Jiangwen
  • Wang, Peixin
  • Zhao, Jie
  • Yang, Yadong
  • Wang, Shang
  • Zeng, Zhaohai
  • Zang, Huadong

Abstract

Manure has been used as a source of nutrients in grain crop production for millennia worldwide. However, whether and how manure applications benefit water use efficiency (WUE) still remains incomplete, especially in the North China Plain under water deficient conditions. A three-year split-plot field experiment was established with (W1) and without (W0) irrigation at the wheat jointing stage as main plots. Fertilization treatments were included as sub-plots with no fertilizer (F0), 100 % chemical fertilizer N (Fc), 100 % manure N (Fm), and 50 % chemical fertilizer N + 50 % manure N (Fc + m). W1 rarely affected WUE of winter wheat in the normal season, but increased that by 67 % in the dry season, compared to W0. W1 had a rare effect on evapotranspiration (ET) and WUE of summer maize. Overall, W1 decreased annual WUE of wheat-maize system by 9% in the normal years, while it increased that by 8% in the dry years. Manure application (Fm and Fc + m) increased WUE of winter wheat by 5–9 % compared to chemical fertilization (Fc), due to the lower ET after anthesis. However, manure application decreased WUE of summer maize by 6–10 % than chemical fertilization, which caused by the higher ET before anthesis. Therefore, fertilization strategies had a minor effect on annual WUE of wheat-maize system. In conclusion, the replacement of mineral N with manure under deficient irrigation provides a better fertilization strategy to maintain annual WUE of wheat-maize system, which has the potential to relieve the regional water scarcity for sustainable agriculture production in the North China Plain.

Suggested Citation

  • Wang, Xiquan & Nie, Jiangwen & Wang, Peixin & Zhao, Jie & Yang, Yadong & Wang, Shang & Zeng, Zhaohai & Zang, Huadong, 2021. "Does the replacement of chemical fertilizer nitrogen by manure benefit water use efficiency of winter wheat – summer maize systems?," Agricultural Water Management, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:agiwat:v:243:y:2021:i:c:s0378377419321080
    DOI: 10.1016/j.agwat.2020.106428
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419321080
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106428?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tom Gleeson & Yoshihide Wada & Marc F. P. Bierkens & Ludovicus P. H. van Beek, 2012. "Water balance of global aquifers revealed by groundwater footprint," Nature, Nature, vol. 488(7410), pages 197-200, August.
    2. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    3. Chen, Yuzhang & Chai, Shouxi & Tian, Huihui & Chai, Yuwei & Li, Yawei & Chang, Lei & Cheng, Hongbo, 2019. "Straw strips mulch on furrows improves water use efficiency and yield of potato in a rainfed semiarid area," Agricultural Water Management, Elsevier, vol. 211(C), pages 142-151.
    4. Sun, Hongyong & Shen, Yanjun & Yu, Qiang & Flerchinger, Gerald N. & Zhang, Yongqiang & Liu, Changming & Zhang, Xiying, 2010. "Effect of precipitation change on water balance and WUE of the winter wheat-summer maize rotation in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1139-1145, August.
    5. M. Rodell & J. S. Famiglietti & D. N. Wiese & J. T. Reager & H. K. Beaudoing & F. W. Landerer & M.-H. Lo, 2018. "Emerging trends in global freshwater availability," Nature, Nature, vol. 557(7707), pages 651-659, May.
    6. Li, Jinpeng & Wang, Yunqi & Zhang, Meng & Liu, Yang & Xu, Xuexin & Lin, Gang & Wang, Zhimin & Yang, Youming & Zhang, Yinghua, 2019. "Optimized micro-sprinkling irrigation scheduling improves grain yield by increasing the uptake and utilization of water and nitrogen during grain filling in winter wheat," Agricultural Water Management, Elsevier, vol. 211(C), pages 59-69.
    7. Li, Quanqi & Dong, Baodi & Qiao, Yunzhou & Liu, Mengyu & Zhang, Jiwang, 2010. "Root growth, available soil water, and water-use efficiency of winter wheat under different irrigation regimes applied at different growth stages in North China," Agricultural Water Management, Elsevier, vol. 97(10), pages 1676-1682, October.
    8. Deng, Xi-Ping & Shan, Lun & Zhang, Heping & Turner, Neil C., 2006. "Improving agricultural water use efficiency in arid and semiarid areas of China," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 23-40, February.
    9. Kang, Shaozhong & Zhang, Lu & Liang, Yinli & Hu, Xiaotao & Cai, Huanjie & Gu, Binjie, 2002. "Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 55(3), pages 203-216, June.
    10. Zheng, Huifang & Shao, Ruixin & Xue, Yanfang & Ying, Hao & Yin, Yulong & Cui, Zhenling & Yang, QingHua, 2020. "Water productivity of irrigated maize production systems in Northern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 234(C).
    11. Zhang, Yongqiang & Kendy, Eloise & Qiang, Yu & Changming, Liu & Yanjun, Shen & Hongyong, Sun, 2004. "Effect of soil water deficit on evapotranspiration, crop yield, and water use efficiency in the North China Plain," Agricultural Water Management, Elsevier, vol. 64(2), pages 107-122, January.
    12. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    13. Sun, Hong-Yong & Liu, Chang-Ming & Zhang, Xi-Ying & Shen, Yan-Jun & Zhang, Yong-Qiang, 2006. "Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 211-218, September.
    14. Wang, Huixiao & Zhang, Lu & Dawes, W. R. & Liu, Changming, 2001. "Improving water use efficiency of irrigated crops in the North China Plain -- measurements and modelling," Agricultural Water Management, Elsevier, vol. 48(2), pages 151-167, June.
    15. Sun, Qinping & Kröbel, Roland & Müller, Torsten & Römheld, Volker & Cui, Zhenling & Zhang, Fusuo & Chen, Xinping, 2011. "Optimization of yield and water-use of different cropping systems for sustainable groundwater use in North China Plain," Agricultural Water Management, Elsevier, vol. 98(5), pages 808-814, March.
    16. Li, Fusheng & Yu, Jiangmin & Nong, Mengling & Kang, Shaozhong & Zhang, Jianhua, 2010. "Partial root-zone irrigation enhanced soil enzyme activities and water use of maize under different ratios of inorganic to organic nitrogen fertilizers," Agricultural Water Management, Elsevier, vol. 97(2), pages 231-239, February.
    17. Zhao, Jie & Han, Tong & Wang, Chong & Jia, Hao & Worqlul, Abeyou W. & Norelli, Nicole & Zeng, Zhaohai & Chu, Qingquan, 2020. "Optimizing irrigation strategies to synchronously improve the yield and water productivity of winter wheat under interannual precipitation variability in the North China Plain," Agricultural Water Management, Elsevier, vol. 240(C).
    18. Gao, Haihe & Yan, Changrong & Liu, Qin & Li, Zhen & Yang, Xiao & Qi, Ruimin, 2019. "Exploring optimal soil mulching to enhance yield and water use efficiency in maize cropping in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 225(C).
    19. Sun, Zhencai & Zhang, Yinghua & Zhang, Zhen & Gao, Yanmei & Yang, Youming & Han, Meikun & Wang, Zhimin, 2019. "Significance of disposable presowing irrigation in wheat in increasing water use efficiency and maintaining high yield under winter wheat-summer maize rotation in the North China Plain," Agricultural Water Management, Elsevier, vol. 225(C).
    20. Fang, Q.X. & Ma, L. & Green, T.R. & Yu, Q. & Wang, T.D. & Ahuja, L.R., 2010. "Water resources and water use efficiency in the North China Plain: Current status and agronomic management options," Agricultural Water Management, Elsevier, vol. 97(8), pages 1102-1116, August.
    21. Li, Quanqi & Bian, Chengyue & Liu, Xinhui & Ma, Changjian & Liu, Quanru, 2015. "Winter wheat grain yield and water use efficiency in wide-precision planting pattern under deficit irrigation in North China Plain," Agricultural Water Management, Elsevier, vol. 153(C), pages 71-76.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Haichao & Li, Sien & Ding, Jie & Yang, Tianyi & Wang, Yuexin, 2023. "Water use efficiency and its drivers of two typical cash crops in an arid area of Northwest China," Agricultural Water Management, Elsevier, vol. 287(C).
    2. Zhang, Binbin & Hu, Yajin & Hill, Robert Lee & Wu, Shufang & Song, Xiaolin, 2021. "Combined effects of biomaterial amendments and rainwater harvesting on soil moisture, structure and apple roots in a rainfed apple orchard on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 248(C).
    3. Zhang, Binbin & Su, Shunshun & Duan, Chenxiao & Feng, Hao & Chau, Henry Wai & He, Jianqiang & Li, Yi & Hill, Robert Lee & Wu, Shufang & Zou, Yufeng, 2022. "Effects of partial organic fertilizer replacement combined with rainwater collection system on soil water, nitrate-nitrogen and apple yield of rainfed apple orchard in the Loess Plateau of China: A 3-," Agricultural Water Management, Elsevier, vol. 260(C).
    4. Zhao, Jie & Zhang, Xuepeng & Yang, Yadong & Zang, Huadong & Yan, Peng & Meki, Manyowa N. & Doro, Luca & Sui, Peng & Jeong, Jaehak & Zeng, Zhaohai, 2021. "Alternative cropping systems for groundwater irrigation sustainability in the North China Plain," Agricultural Water Management, Elsevier, vol. 250(C).
    5. Chen, Zhijun & Li, Yue & Zhang, Xuechen & Xiong, Yunwu & Huang, Quanzhong & Jin, Song & Sun, Shijun & Chi, Daocai & Huang, Guanhua, 2022. "Effects of lignite bioorganic product on sunflower growth, water and nitrogen productivity in saline-sodic farmlands at Northwest China," Agricultural Water Management, Elsevier, vol. 271(C).
    6. Su, Han & Sun, Hongyong & Dong, Xinliang & Chen, Pei & Zhang, Xuejia & Tian, Liu & Liu, Xiaojing & Wang, Jintao, 2021. "Did manure improve saline water irrigation threshold of winter wheat? A 3-year field investigation," Agricultural Water Management, Elsevier, vol. 258(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Ruiyun & Yao, Fengmei & Zhang, Sha & Yang, Shanshan & Bai, Yun & Zhang, Jiahua & Wang, Jingwen & Wang, Xin, 2021. "Assessing the effects of precipitation and irrigation on winter wheat yield and water productivity in North China Plain," Agricultural Water Management, Elsevier, vol. 256(C).
    2. Iqbal, M. Anjum & Shen, Yanjun & Stricevic, Ruzica & Pei, Hongwei & Sun, Hongyoung & Amiri, Ebrahim & Penas, Angel & del Rio, Sara, 2014. "Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation," Agricultural Water Management, Elsevier, vol. 135(C), pages 61-72.
    3. Zhao, Jie & Han, Tong & Wang, Chong & Jia, Hao & Worqlul, Abeyou W. & Norelli, Nicole & Zeng, Zhaohai & Chu, Qingquan, 2020. "Optimizing irrigation strategies to synchronously improve the yield and water productivity of winter wheat under interannual precipitation variability in the North China Plain," Agricultural Water Management, Elsevier, vol. 240(C).
    4. Zeng, Ruiyun & Lin, Xiaomao & Welch, Stephen M. & Yang, Shanshan & Huang, Na & Sassenrath, Gretchen F. & Yao, Fengmei, 2023. "Impact of water deficit and irrigation management on winter wheat yield in China," Agricultural Water Management, Elsevier, vol. 287(C).
    5. Fang, Q.X. & Ma, L. & Green, T.R. & Yu, Q. & Wang, T.D. & Ahuja, L.R., 2010. "Water resources and water use efficiency in the North China Plain: Current status and agronomic management options," Agricultural Water Management, Elsevier, vol. 97(8), pages 1102-1116, August.
    6. Sun, Qinping & Kröbel, Roland & Müller, Torsten & Römheld, Volker & Cui, Zhenling & Zhang, Fusuo & Chen, Xinping, 2011. "Optimization of yield and water-use of different cropping systems for sustainable groundwater use in North China Plain," Agricultural Water Management, Elsevier, vol. 98(5), pages 808-814, March.
    7. Zhong, Honglin & Sun, Laixiang & Fischer, Günther & Tian, Zhan & van Velthuizen, Harrij & Liang, Zhuoran, 2017. "Mission Impossible? Maintaining regional grain production level and recovering local groundwater table by cropping system adaptation across the North China Plain," Agricultural Water Management, Elsevier, vol. 193(C), pages 1-12.
    8. Mansour, Elsayed & Abdul-Hamid, Mohamed I & Yasin, Mohamed T & Qabil, Naglaa & Attia, Ahmed, 2017. "Identifying drought-tolerant genotypes of barley and their responses to various irrigation levels in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 194(C), pages 58-67.
    9. Sun, Hongyong & Zhang, Xiying & Liu, Xiujing & Liu, Xiuwei & Shao, Liwei & Chen, Suying & Wang, Jintao & Dong, Xinliang, 2019. "Impact of different cropping systems and irrigation schedules on evapotranspiration, grain yield and groundwater level in the North China Plain," Agricultural Water Management, Elsevier, vol. 211(C), pages 202-209.
    10. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2018. "Determining water use efficiency of wheat and cotton: A meta-regression analysis," Agricultural Water Management, Elsevier, vol. 199(C), pages 48-60.
    11. Xin Zhang & Jianheng Zhang & Jiaxin Xue & Guiyan Wang, 2023. "Improving Wheat Yield and Water-Use Efficiency by Optimizing Irrigations in Northern China," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
    12. Yan, Nana & Wu, Bingfang & Perry, Chris & Zeng, Hongwei, 2015. "Assessing potential water savings in agriculture on the Hai Basin plain, China," Agricultural Water Management, Elsevier, vol. 154(C), pages 11-19.
    13. Xiao, Dengpan & Shen, Yanjun & Qi, Yongqing & Moiwo, Juana P. & Min, Leilei & Zhang, Yucui & Guo, Ying & Pei, Hongwei, 2017. "Impact of alternative cropping systems on groundwater use and grain yields in the North China Plain Region," Agricultural Systems, Elsevier, vol. 153(C), pages 109-117.
    14. Luo, Jianmei & Shen, Yanjun & Qi, Yongqing & Zhang, Yucui & Xiao, Dengpan, 2018. "Evaluating water conservation effects due to cropping system optimization on the Beijing-Tianjin-Hebei plain, China," Agricultural Systems, Elsevier, vol. 159(C), pages 32-41.
    15. Fan, Yanli & Liu, Junmei & Zhao, Jiatao & Ma, Yuzhao & Li, Quanqi, 2019. "Effects of delayed irrigation during the jointing stage on the photosynthetic characteristics and yield of winter wheat under different planting patterns," Agricultural Water Management, Elsevier, vol. 221(C), pages 371-376.
    16. Wu, Yang & Jia, Zhikuan & Ren, Xiaolong & Zhang, Yan & Chen, Xin & Bing, Haoyang & Zhang, Peng, 2015. "Effects of ridge and furrow rainwater harvesting system combined with irrigation on improving water use efficiency of maize (Zea mays L.) in semi-humid area of China," Agricultural Water Management, Elsevier, vol. 158(C), pages 1-9.
    17. Ren, Pinpin & Huang, Feng & Li, Baoguo, 2022. "Spatiotemporal patterns of water consumption and irrigation requirements of wheat-maize in the Huang-Huai-Hai Plain, China and options of their reduction," Agricultural Water Management, Elsevier, vol. 263(C).
    18. Xue Wang & Xiubin Li, 2018. "Irrigation Water Availability and Winter Wheat Abandonment in the North China Plain (NCP): Findings from a Case Study in Cangxian County of Hebei Province," Sustainability, MDPI, vol. 10(2), pages 1-16, January.
    19. Gao, Xiaoyu & Bai, Yining & Huo, Zailin & Xu, Xu & Huang, Guanhua & Xia, Yuhong & Steenhuis, Tammo S., 2017. "Deficit irrigation enhances contribution of shallow groundwater to crop water consumption in arid area," Agricultural Water Management, Elsevier, vol. 185(C), pages 116-125.
    20. Zhang, Chun & Dong, Zhaoyun & Guo, Qin & Hu, Zhilin & Li, Juan & Wei, Ting & Ding, Ruixia & Cai, Tie & Ren, Xiaolong & Han, Qingfang & Zhang, Peng & Jia, Zhikuan, 2022. "Ridge–furrow rainwater harvesting combined with supplementary irrigation: Water-saving and yield-maintaining mode for winter wheat in a semiarid region based on 8-year in-situ experiment," Agricultural Water Management, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:243:y:2021:i:c:s0378377419321080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.