IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v259y2022ics0378377421005151.html
   My bibliography  Save this article

Joint analysis of drought and heat events during maize (Zea mays L.) growth periods using copula and cloud models: A case study of Songliao Plain

Author

Listed:
  • Guo, Ying
  • Lu, Xiaoling
  • Zhang, Jiquan
  • Li, Kaiwei
  • Wang, Rui
  • Rong, Guangzhi
  • Liu, Xingpeng
  • Tong, Zhijun

Abstract

Due to global warming, it is necessary to study the influence of extreme climate and concurrent events on crop growth. The study area was the Songliao Plain, where drought events frequently occur. First, the daily meteorological data of 14 meteorological stations from 1981 to 2016 were collected to analyze the temporal and spatial changes in the crop water surplus and deficit index, extreme growing degree-days, and heat stress intensity during different growth stages of maize. Second, the cloud model was used to describe the fuzziness of concurrent events (simultaneous drought and heat), and mutual mapping between qualitative and quantitative data was undertaken. The fuzzy certainty degree of the influence of different degrees of concurrent events on maize was calculated. Third, the copula function was used to describe the randomness of concurrent extreme events and calculate the joint probability distribution and return period. An assessment method was proposed for concurrent events from the perspective of system uncertainty. Finally, we analyzed the relationship between concurrent events and maize yield, which showed different degrees of water deficit and warming trends during each growth period. Crops were most affected by extreme weather during the reproductive growth period (RGP). During the vegetative growth period (VGP), the temperature increase was higher than in other periods, especially in the high-latitude region. The frequency of mild concurrent events was higher during the VGP and RGP. During the vegetative and reproductive period, the average occurrence probability of mild, moderate, and severe concurrent events was 21.9%, 1.7%, and 0.35%, respectively, whereas during the RGP, it was 23.1%, 8.2%, and 0.12%, respectively. The present study provides a meaningful reference for a better understanding of the occurrence laws of drought, heat, and concurrent events during crop growth periods and how to optimize the agricultural management of maize.

Suggested Citation

  • Guo, Ying & Lu, Xiaoling & Zhang, Jiquan & Li, Kaiwei & Wang, Rui & Rong, Guangzhi & Liu, Xingpeng & Tong, Zhijun, 2022. "Joint analysis of drought and heat events during maize (Zea mays L.) growth periods using copula and cloud models: A case study of Songliao Plain," Agricultural Water Management, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:agiwat:v:259:y:2022:i:c:s0378377421005151
    DOI: 10.1016/j.agwat.2021.107238
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421005151
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107238?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paredes, P. & Pereira, L.S. & Almorox, J. & Darouich, H., 2020. "Reference grass evapotranspiration with reduced data sets: Parameterization of the FAO Penman-Monteith temperature approach and the Hargeaves-Samani equation using local climatic variables," Agricultural Water Management, Elsevier, vol. 240(C).
    2. Zhijuan Liu & Xiaoguang Yang & Fu Chen & Enli Wang, 2013. "The effects of past climate change on the northern limits of maize planting in Northeast China," Climatic Change, Springer, vol. 117(4), pages 891-902, April.
    3. Yang, Xiaolin & Jin, Xinnan & Chu, Qingquan & Pacenka, Steven & Steenhuis, Tammo S., 2021. "Impact of climate variation from 1965 to 2016 on cotton water requirements in North China Plain," Agricultural Water Management, Elsevier, vol. 243(C).
    4. Michael Leonard & Seth Westra & Aloke Phatak & Martin Lambert & Bart van den Hurk & Kathleen McInnes & James Risbey & Sandra Schuster & Doerte Jakob & Mark Stafford‐Smith, 2014. "A compound event framework for understanding extreme impacts," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 5(1), pages 113-128, January.
    5. Ying Sun & Xuebin Zhang & Francis W. Zwiers & Lianchun Song & Hui Wan & Ting Hu & Hong Yin & Guoyu Ren, 2014. "Rapid increase in the risk of extreme summer heat in Eastern China," Nature Climate Change, Nature, vol. 4(12), pages 1082-1085, December.
    6. Yang, Xiaolin & Gao, Wangsheng & Shi, Quanhong & Chen, Fu & Chu, Qingquan, 2013. "Impact of climate change on the water requirement of summer maize in the Huang-Huai-Hai farming region," Agricultural Water Management, Elsevier, vol. 124(C), pages 20-27.
    7. Dim Coumou & Alexander Robinson & Stefan Rahmstorf, 2013. "Global increase in record-breaking monthly-mean temperatures," Climatic Change, Springer, vol. 118(3), pages 771-782, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeng, Ruiyun & Lin, Xiaomao & Welch, Stephen M. & Yang, Shanshan & Huang, Na & Sassenrath, Gretchen F. & Yao, Fengmei, 2023. "Impact of water deficit and irrigation management on winter wheat yield in China," Agricultural Water Management, Elsevier, vol. 287(C).
    2. Zhao, Yunmeng & Na, Mula & Guo, Ying & Liu, Xingping & Tong, Zhijun & Zhang, Jiquan & Zhao, Chunli, 2023. "Dynamic vulnerability assessment of maize under low temperature and drought concurrent stress in Songliao Plain," Agricultural Water Management, Elsevier, vol. 286(C).
    3. Liu, Cong & Li, Kaiwei & Zhang, Jiquan & Guga, Suri & Wang, Rui & Liu, Xingpeng & Tong, Zhijun, 2023. "Dynamic risk assessment of waterlogging disaster to spring peanut (Arachis hypogaea L.) in Henan Province, China," Agricultural Water Management, Elsevier, vol. 277(C).
    4. Zhao, Jiongchao & Han, Tong & Wang, Chong & Shi, Xiaoyu & Wang, Kaicheng & Zhao, Mingyu & Chen, Fu & Chu, Qingquan, 2022. "Assessing variation and driving factors of the county-scale water footprint for soybean production in China," Agricultural Water Management, Elsevier, vol. 263(C).
    5. Yang, Yueting & Li, Kaiwei & Wei, Sicheng & Guga, Suri & Zhang, Jiquan & Wang, Chunyi, 2022. "Spatial-temporal distribution characteristics and hazard assessment of millet drought disaster in Northern China under climate change," Agricultural Water Management, Elsevier, vol. 272(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Hidalgo García & Julián Arco Díaz & Adelaida Martín Martín & Emilio Gómez Cobos, 2022. "Spatiotemporal Analysis of Urban Thermal Effects Caused by Heat Waves through Remote Sensing," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
    2. David Hidalgo García, 2023. "Evaluation and Analysis of the Effectiveness of the Main Mitigation Measures against Surface Urban Heat Islands in Different Local Climate Zones through Remote Sensing," Sustainability, MDPI, vol. 15(13), pages 1-23, July.
    3. Wang, Shiquan & Xiong, Jinran & Yang, Boyuan & Yang, Xiaolin & Du, Taisheng & Steenhuis, Tammo S. & Siddique, Kadambot H.M. & Kang, Shaozhong, 2023. "Diversified crop rotations reduce groundwater use and enhance system resilience," Agricultural Water Management, Elsevier, vol. 276(C).
    4. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    5. Jascha Lehmann & Dim Coumou & Katja Frieler, 2015. "Increased record-breaking precipitation events under global warming," Climatic Change, Springer, vol. 132(4), pages 501-515, October.
    6. Linze Li & Chengsheng Jiang & Raghu Murtugudde & Xin-Zhong Liang & Amir Sapkota, 2021. "Global Population Exposed to Extreme Events in the 150 Most Populated Cities of the World: Implications for Public Health," IJERPH, MDPI, vol. 18(3), pages 1-11, February.
    7. Zhang, Yu & Liu, Xiaohong & Jiao, Wenzhe & Zhao, Liangju & Zeng, Xiaomin & Xing, Xiaoyu & Zhang, Lingnan & Hong, Yixue & Lu, Qiangqiang, 2022. "A new multi-variable integrated framework for identifying flash drought in the Loess Plateau and Qinling Mountains regions of China," Agricultural Water Management, Elsevier, vol. 265(C).
    8. Wang, Linyuan & Zhao, Lin & Mao, Guozhu & Zuo, Jian & Du, Huibin, 2017. "Way to accomplish low carbon development transformation: A bibliometric analysis during 1995–2014," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 57-69.
    9. Meng, Fanchao & Zhang, Lei & Ren, Guoyu & Zhang, Ruixue, 2023. "Impacts of UHI on variations in cooling loads in buildings during heatwaves: A case study of Beijing and Tianjin, China," Energy, Elsevier, vol. 273(C).
    10. Na Li & Tangzhe Nie & Yi Tang & Dehao Lu & Tianyi Wang & Zhongxue Zhang & Peng Chen & Tiecheng Li & Linghui Meng & Yang Jiao & Kaiwen Cheng, 2022. "Responses of Soybean Water Supply and Requirement to Future Climate Conditions in Heilongjiang Province," Agriculture, MDPI, vol. 12(7), pages 1-21, July.
    11. Guoyong Leng & Qiuhong Tang & Shengzhi Huang & Xuejun Zhang, 2016. "Extreme hot summers in China in the CMIP5 climate models," Climatic Change, Springer, vol. 135(3), pages 669-681, April.
    12. Yuqing Zhang & Guangxiong Mao & Changchun Chen & Liucheng Shen & Binyu Xiao, 2021. "Population Exposure to Compound Droughts and Heatwaves in the Observations and ERA5 Reanalysis Data in the Gan River Basin, China," Land, MDPI, vol. 10(10), pages 1-28, September.
    13. Haowei Sun & Jinghan Ma & Li Wang, 2023. "Changes in per capita wheat production in China in the context of climate change and population growth," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 15(3), pages 597-612, June.
    14. Ali Ahmadalipour & Hamid Moradkhani & Mukesh Kumar, 2019. "Mortality risk from heat stress expected to hit poorest nations the hardest," Climatic Change, Springer, vol. 152(3), pages 569-579, March.
    15. Léo Régnier & Maxim Dolgushev & Olivier Bénichou, 2023. "Record ages of non-Markovian scale-invariant random walks," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    16. Panagiota Galiatsatou & Christos Makris & Panayotis Prinos & Dimitrios Kokkinos, 2019. "Nonstationary joint probability analysis of extreme marine variables to assess design water levels at the shoreline in a changing climate," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(3), pages 1051-1089, September.
    17. Gianluca Pescaroli & David Alexander, 2018. "Understanding Compound, Interconnected, Interacting, and Cascading Risks: A Holistic Framework," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2245-2257, November.
    18. Serra, J. & Paredes, P. & Cordovil, CMdS & Cruz, S. & Hutchings, NJ & Cameira, MR, 2023. "Is irrigation water an overlooked source of nitrogen in agriculture?," Agricultural Water Management, Elsevier, vol. 278(C).
    19. Zhang, Lei & Traore, Seydou & Cui, Yuanlai & Luo, Yufeng & Zhu, Ge & Liu, Bo & Fipps, Guy & Karthikeyan, R. & Singh, Vijay, 2019. "Assessment of spatiotemporal variability of reference evapotranspiration and controlling climate factors over decades in China using geospatial techniques," Agricultural Water Management, Elsevier, vol. 213(C), pages 499-511.
    20. Qi Wang & Longtu Zhu & Mingwei Li & Dongyan Huang & Honglei Jia, 2018. "Conservation Agriculture Using Coulters: Effects of Crop Residue on Working Performance," Sustainability, MDPI, vol. 10(11), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:259:y:2022:i:c:s0378377421005151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.