IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v38y2018i11p2245-2257.html
   My bibliography  Save this article

Understanding Compound, Interconnected, Interacting, and Cascading Risks: A Holistic Framework

Author

Listed:
  • Gianluca Pescaroli
  • David Alexander

Abstract

In recent years, there has been a gradual increase in research literature on the challenges of interconnected, compound, interacting, and cascading risks. These concepts are becoming ever more central to the resilience debate. They aggregate elements of climate change adaptation, critical infrastructure protection, and societal resilience in the face of complex, high‐impact events. However, despite the potential of these concepts to link together diverse disciplines, scholars and practitioners need to avoid treating them in a superficial or ambiguous manner. Overlapping uses and definitions could generate confusion and lead to the duplication of research effort. This article gives an overview of the state of the art regarding compound, interconnected, interacting, and cascading risks. It is intended to help build a coherent basis for the implementation of the Sendai Framework for Disaster Risk Reduction (SFDRR). The main objective is to propose a holistic framework that highlights the complementarities of the four kinds of complex risk in a manner that is designed to support the work of researchers and policymakers. This article suggests how compound, interconnected, interacting, and cascading risks could be used, with little or no redundancy, as inputs to new analyses and decisional tools designed to support the implementation of the SFDRR. The findings can be used to improve policy recommendations and support tools for emergency and crisis management, such as scenario building and impact trees, thus contributing to the achievement of a system‐wide approach to resilience.

Suggested Citation

  • Gianluca Pescaroli & David Alexander, 2018. "Understanding Compound, Interconnected, Interacting, and Cascading Risks: A Holistic Framework," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2245-2257, November.
  • Handle: RePEc:wly:riskan:v:38:y:2018:i:11:p:2245-2257
    DOI: 10.1111/risa.13128
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.13128
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.13128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael Leonard & Seth Westra & Aloke Phatak & Martin Lambert & Bart van den Hurk & Kathleen McInnes & James Risbey & Sandra Schuster & Doerte Jakob & Mark Stafford‐Smith, 2014. "A compound event framework for understanding extreme impacts," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 5(1), pages 113-128, January.
    2. Igor Linkov & Todd Bridges & Felix Creutzig & Jennifer Decker & Cate Fox-Lent & Wolfgang Kröger & James H. Lambert & Anders Levermann & Benoit Montreuil & Jatin Nathwani & Raymond Nyer & Ortwin Renn &, 2014. "Changing the resilience paradigm," Nature Climate Change, Nature, vol. 4(6), pages 407-409, June.
    3. Dirk Helbing, 2013. "Globally networked risks and how to respond," Nature, Nature, vol. 497(7447), pages 51-59, May.
    4. Gianluca Pescaroli & David Alexander, 2016. "Critical infrastructure, panarchies and the vulnerability paths of cascading disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 175-192, May.
    5. Aven, Terje, 2010. "On how to define, understand and describe risk," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 623-631.
    6. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    7. Didier SORNETTE, 2009. "Dragon-Kings, Black Swans and the Prediction of Crises," Swiss Finance Institute Research Paper Series 09-36, Swiss Finance Institute.
    8. Bertram Price & Michael MacNicoll, 2015. "Multiple Interacting Risk Factors: On Methods for Allocating Risk Factor Interactions," Risk Analysis, John Wiley & Sons, vol. 35(5), pages 931-940, May.
    9. Nicholas Santella & Laura J. Steinberg & Gloria Andrea Aguirra, 2011. "Empirical Estimation of the Conditional Probability of Natech Events Within the United States," Risk Analysis, John Wiley & Sons, vol. 31(6), pages 951-968, June.
    10. Enrico Zio & Giovanni Sansavini, 2011. "Component Criticality in Failure Cascade Processes of Network Systems," Risk Analysis, John Wiley & Sons, vol. 31(8), pages 1196-1210, August.
    11. Seth Guikema & Laura McLay & James H. Lambert, 2015. "Infrastructure Systems, Risk Analysis, and Resilience—Research Gaps and Opportunities," Risk Analysis, John Wiley & Sons, vol. 35(4), pages 560-561, April.
    12. K. Peters & L. Buzna & D. Helbing, 2008. "Modelling of cascading effects and efficient response to disaster spreading in complex networks," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 4(1/2), pages 46-62.
    13. Aven, Terje, 2016. "Risk assessment and risk management: Review of recent advances on their foundation," European Journal of Operational Research, Elsevier, vol. 253(1), pages 1-13.
    14. Olaf Jonkeren & Ivano Azzini & Luca Galbusera & Stavros Ntalampiras & Georgios Giannopoulos, 2015. "Analysis of Critical Infrastructure Network Failure in the European Union: A Combined Systems Engineering and Economic Model," Networks and Spatial Economics, Springer, vol. 15(2), pages 253-270, June.
    15. [WEF] World Economic Forum, 2016. "The Global Risks Report 2016: 11th Edition," Working Papers id:10737, eSocialSciences.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Undheim, Trond Arne, 2024. "In search of better methods for the longitudinal assessment of tech-derived X-risks: How five leading scenario planning efforts can help," Technology in Society, Elsevier, vol. 77(C).
    2. Christo Odeyemi & Takashi Sekiyama, 2022. "A Review of Climate Security Discussions in Japan," IJERPH, MDPI, vol. 19(14), pages 1-21, July.
    3. Thomas J. Huggins & Feiyu E & Kangming Chen & Wenwu Gong & Lili Yang, 2020. "Infrastructural Aspects of Rain-Related Cascading Disasters: A Systematic Literature Review," IJERPH, MDPI, vol. 17(14), pages 1-25, July.
    4. Jennifer Helgeson & Cheyney O’Fallon, 2021. "Resilience Dividends and Resilience Windfalls: Narratives That Tie Disaster Resilience Co-Benefits to Long-Term Sustainability," Sustainability, MDPI, vol. 13(8), pages 1-27, April.
    5. Alana M. Weir & Thomas M. Wilson & Mark S. Bebbington & Sarah Beaven & Teresa Gordon & Craig Campbell-Smart & Stuart Mead & James H. Williams & Roger Fairclough, 2024. "Approaching the challenge of multi-phase, multi-hazard volcanic impact assessment through the lens of systemic risk: application to Taranaki Mounga," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(10), pages 9327-9360, August.
    6. Gong, Xu & Song, Yijie & Fu, Chengbo & Li, Huijing, 2023. "Climate risk and stock performance of fossil fuel companies: An international analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 89(C).
    7. Daniel Thompson & Gianluca Pescaroli, 2024. "Financing electricity resilience in local communities: a review of the literature," Environment Systems and Decisions, Springer, vol. 44(3), pages 740-762, September.
    8. Emanuele Bevacqua & Laura Suarez-Gutierrez & Aglaé Jézéquel & Flavio Lehner & Mathieu Vrac & Pascal Yiou & Jakob Zscheischler, 2023. "Advancing research on compound weather and climate events via large ensemble model simulations," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Ivan Villaverde Canosa & James Ford & Jouni Paavola & Daria Burnasheva, 2024. "Community Risk and Resilience to Wildfires: Rethinking the Complex Human–Climate–Fire Relationship in High-Latitude Regions," Sustainability, MDPI, vol. 16(3), pages 1-22, January.
    10. Soumyatanu Mukherjee & Sidhartha S. Padhi, 2022. "Sourcing decision under interconnected risks: an application of mean–variance preferences approach," Annals of Operations Research, Springer, vol. 313(2), pages 1243-1268, June.
    11. Kyunghun Kim & Young Hye Bae & Hung Soo Kim, 2024. "Estimating the natural disaster ınter-event time defition (NIETD) to define compound natural disasters in South Korea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(9), pages 8761-8778, July.
    12. Thomas J. Huggins & Lili Yang & Didier Sornette, 2021. "Introduction to the Special Issue on Cascading Disaster Modelling and Prevention," IJERPH, MDPI, vol. 18(9), pages 1-4, April.
    13. Kuttler, Emma & Ghorbani-Renani, Nafiseh & Barker, Kash & González, Andrés D. & Johansson, Jonas, 2024. "Protection-interdiction-restoration for resilient multi-commodity networks," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    14. Insang Yu & Huicheul Jung, 2022. "Flood Risk Assessment to Enable Improved Decision-Making for Climate Change Adaptation Strategies by Central and Local Governments," Sustainability, MDPI, vol. 14(21), pages 1-24, November.
    15. Venturini, Alessio, 2022. "Climate change, risk factors and stock returns: A review of the literature," International Review of Financial Analysis, Elsevier, vol. 79(C).
    16. Heidenstrøm, Nina & Throne-Holst, Harald, 2020. "“Someone will take care of it”. Households' understanding of their responsibility to prepare for and cope with electricity and ICT infrastructure breakdowns," Energy Policy, Elsevier, vol. 144(C).
    17. Veruska Muccione & Thomas Lontzek & Christian Huggel & Philipp Ott & Nadine Salzmann, 2023. "An application of dynamic programming to local adaptation decision-making," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 523-544, October.
    18. Christian Huggel & Laurens M. Bouwer & Sirkku Juhola & Reinhard Mechler & Veruska Muccione & Ben Orlove & Ivo Wallimann-Helmer, 2022. "The existential risk space of climate change," Climatic Change, Springer, vol. 174(1), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olga Bucovetchi & Alexandru Georgescu & Dorel Badea & Radu D. Stanciu, 2019. "Agent-Based Modeling (ABM): Support for Emphasizing the Air Transport Infrastructure Dependence of Space Systems," Sustainability, MDPI, vol. 11(19), pages 1-18, September.
    2. Wang, Weiping & Yang, Saini & Hu, Fuyu & Stanley, H. Eugene & He, Shuai & Shi, Mimi, 2018. "An approach for cascading effects within critical infrastructure systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 164-177.
    3. Li Sun & Bozidar Stojadinovic & Giovanni Sansavini, 2019. "Agent‐Based Recovery Model for Seismic Resilience Evaluation of Electrified Communities," Risk Analysis, John Wiley & Sons, vol. 39(7), pages 1597-1614, July.
    4. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    5. Xiao‐Bing Hu & Hang Li & XiaoMei Guo & Pieter H. A. J. M. van Gelder & Peijun Shi, 2019. "Spatial Vulnerability of Network Systems under Spatially Local Hazards," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 162-179, January.
    6. Wouter Vermeer & Otto Koppius & Peter Vervest, 2018. "The Radiation-Transmission-Reception (RTR) model of propagation: Implications for the effectiveness of network interventions," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-21, December.
    7. Gangwal, Utkarsh & Singh, Mayank & Pandey, Pradumn Kumar & Kamboj, Deepak & Chatterjee, Samrat & Bhatia, Udit, 2022. "Identifying early-warning indicators of onset of sudden collapse in networked infrastructure systems against sequential disruptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    8. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. repec:spo:wpmain:info:hdl:2441/1nlv566svi86iqtetenms15tc4 is not listed on IDEAS
    10. Arnaud Mignan & Ziqi Wang, 2020. "Exploring the Space of Possibilities in Cascading Disasters with Catastrophe Dynamics," IJERPH, MDPI, vol. 17(19), pages 1-21, October.
    11. Yifan Yang & S. Thomas Ng & Frank J. Xu & Martin Skitmore & Shenghua Zhou, 2019. "Towards Resilient Civil Infrastructure Asset Management: An Information Elicitation and Analytical Framework," Sustainability, MDPI, vol. 11(16), pages 1-24, August.
    12. repec:spo:wpmain:info:hdl:2441/5qr7f0k4sk8rbq4do5u6v70rm0 is not listed on IDEAS
    13. Rachunok, Benjamin & Nateghi, Roshanak, 2020. "The sensitivity of electric power infrastructure resilience to the spatial distribution of disaster impacts," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    14. Henrik Hassel & Alexander Cedergren, 2019. "Exploring the Conceptual Foundation of Continuity Management in the Context of Societal Safety," Risk Analysis, John Wiley & Sons, vol. 39(7), pages 1503-1519, July.
    15. Huicong Jia & Fang Chen & Donghua Pan, 2019. "Disaster Chain Analysis of Avalanche and Landslide and the River Blocking Dam of the Yarlung Zangbo River in Milin County of Tibet on 17 and 29 October 2018," IJERPH, MDPI, vol. 16(23), pages 1-12, November.
    16. Steen, Riana & Ferreira, Pedro, 2020. "Resilient flood-risk management at the municipal level through the lens of the Functional Resonance Analysis Model," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    17. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    18. Hiroki Noguchi & Takuma Nishizawa & Masaaki Fuse, 2021. "A method to characterize the social cascading damage processes of disasters using media information," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 231-247, May.
    19. Liu, Xing & Fang, Yi-Ping & Zio, Enrico, 2021. "A Hierarchical Resilience Enhancement Framework for Interdependent Critical Infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    20. Kenneth Pettersen Gould, 2021. "Organizational Risk: “Muddling Through” 40 Years of Research," Risk Analysis, John Wiley & Sons, vol. 41(3), pages 456-465, March.
    21. Christos Ellinas & Christos Nicolaides & Naoki Masuda, 2022. "Mitigation strategies against cascading failures within a project activity network," Journal of Computational Social Science, Springer, vol. 5(1), pages 383-400, May.
    22. Chaoqi, Fu & Yangjun, Gao & Jilong, Zhong & Yun, Sun & Pengtao, Zhang & Tao, Wu, 2021. "Attack-defense game for critical infrastructure considering the cascade effect," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:38:y:2018:i:11:p:2245-2257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.