IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v227y2025ics0308521x25001015.html
   My bibliography  Save this article

Harmonizing soil carbon simulation models, emission factors and direct measurements used in LCA of agricultural systems

Author

Listed:
  • Pelaracci, Simone
  • Goglio, Pietro
  • Moakes, Simon
  • Knudsen, Marie Trydeman
  • Van Mierlo, Klara
  • Adams, Nina
  • Maxime, Fossey
  • Maresca, Alberto
  • Romero-Huelva, Manuel
  • Waqas, Muhammad Ahmed
  • Smith, Laurence G.
  • Oudshoorn, Frank Willem
  • Nemecek, Thomas
  • de Camillis, Camillo
  • Grossi, Giampiero
  • Smith, Ward

Abstract

The increasing demand for animal products, coupled with the need to reduce greenhouse gas (GHG) emissions from livestock production, highlights the urgency for effective mitigation strategies for livestock systems, including the cropping systems. Soil organic carbon (SOC) sequestration, a crucial approach for reducing atmospheric GHG concentrations, is often underrepresented in Life Cycle Assessments (LCA) of agricultural systems, largely due to methodological challenges in accurately accounting for soil carbon dynamics.

Suggested Citation

  • Pelaracci, Simone & Goglio, Pietro & Moakes, Simon & Knudsen, Marie Trydeman & Van Mierlo, Klara & Adams, Nina & Maxime, Fossey & Maresca, Alberto & Romero-Huelva, Manuel & Waqas, Muhammad Ahmed & Smi, 2025. "Harmonizing soil carbon simulation models, emission factors and direct measurements used in LCA of agricultural systems," Agricultural Systems, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:agisys:v:227:y:2025:i:c:s0308521x25001015
    DOI: 10.1016/j.agsy.2025.104361
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X25001015
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2025.104361?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Keith Paustian & Johannes Lehmann & Stephen Ogle & David Reay & G. Philip Robertson & Pete Smith, 2016. "Climate-smart soils," Nature, Nature, vol. 532(7597), pages 49-57, April.
    2. Richard J. Plevin, 2017. "Assessing the Climate Effects of Biofuels Using Integrated Assessment Models, Part I: Methodological Considerations," Journal of Industrial Ecology, Yale University, vol. 21(6), pages 1478-1487, December.
    3. Mario Herrero & Benjamin Henderson & Petr Havlík & Philip K. Thornton & Richard T. Conant & Pete Smith & Stefan Wirsenius & Alexander N. Hristov & Pierre Gerber & Margaret Gill & Klaus Butterbach-Bahl, 2016. "Greenhouse gas mitigation potentials in the livestock sector," Nature Climate Change, Nature, vol. 6(5), pages 452-461, May.
    4. Marc Jourdaine & Philippe Loubet & Stephane Trebucq & Guido Sonnemann, 2020. "A detailed quantitative comparison of the life cycle assessment of bottled wines using an original harmonization procedure," Post-Print hal-03253002, HAL.
    5. Yi Yang & David Tilman & George Furey & Clarence Lehman, 2019. "Soil carbon sequestration accelerated by restoration of grassland biodiversity," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    6. Tuomi, M. & Thum, T. & Järvinen, H. & Fronzek, S. & Berg, B. & Harmon, M. & Trofymow, J.A. & Sevanto, S. & Liski, J., 2009. "Leaf litter decomposition—Estimates of global variability based on Yasso07 model," Ecological Modelling, Elsevier, vol. 220(23), pages 3362-3371.
    7. MacWilliam, S. & Wismer, M. & Kulshreshtha, S., 2014. "Life cycle and economic assessment of Western Canadian pulse systems: The inclusion of pulses in crop rotations," Agricultural Systems, Elsevier, vol. 123(C), pages 43-53.
    8. Yantai Gan & Chang Liang & Qiang Chai & Reynald L. Lemke & Con A. Campbell & Robert P. Zentner, 2014. "Improving farming practices reduces the carbon footprint of spring wheat production," Nature Communications, Nature, vol. 5(1), pages 1-13, December.
    9. Bruce E. Dale & Seungdo Kim, 2014. "Can the Predictions of Consequential Life Cycle Assessment Be Tested in the Real World? Comment on “Using Attributional Life Cycle Assessment to Estimate Climate-Change Mitigation...”," Journal of Industrial Ecology, Yale University, vol. 18(3), pages 466-467, May.
    10. David S. Powlson & Clare M. Stirling & M. L. Jat & Bruno G. Gerard & Cheryl A. Palm & Pedro A. Sanchez & Kenneth G. Cassman, 2014. "Limited potential of no-till agriculture for climate change mitigation," Nature Climate Change, Nature, vol. 4(8), pages 678-683, August.
    11. Zaher, U. & Stöckle, C. & Painter, K. & Higgins, S., 2013. "Life cycle assessment of the potential carbon credit from no- and reduced-tillage winter wheat-based cropping systems in Eastern Washington State," Agricultural Systems, Elsevier, vol. 122(C), pages 73-78.
    12. Goglio, Pietro & Moakes, Simon & Knudsen, Marie Trydeman & Van Mierlo, Klara & Adams, Nina & Maxime, Fossey & Maresca, Alberto & Romero-Huelva, Manuel & Waqas, Muhammad Ahmed & Smith, Laurence G. & Gr, 2024. "Harmonizing methods to account for soil nitrous oxide emissions in Life Cycle Assessment of agricultural systems," Agricultural Systems, Elsevier, vol. 219(C).
    13. Yong Zhou & Jenia Singh & John R. Butnor & Corli Coetsee & Peter B. Boucher & Madelon F. Case & Evan G. Hockridge & Andrew B. Davies & A. Carla Staver, 2022. "Limited increases in savanna carbon stocks over decades of fire suppression," Nature, Nature, vol. 603(7901), pages 445-449, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaolin Yang & Jinran Xiong & Taisheng Du & Xiaotang Ju & Yantai Gan & Sien Li & Longlong Xia & Yanjun Shen & Steven Pacenka & Tammo S. Steenhuis & Kadambot H. M. Siddique & Shaozhong Kang & Klaus But, 2024. "Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Wang, Yicheng & Tao, Fulu & Chen, Yi & Yin, Lichang, 2024. "Climate mitigation potential and economic costs of natural climate solutions for main cropping systems across China," Agricultural Systems, Elsevier, vol. 218(C).
    3. Joseph Palazzo & Roland Geyer & Sangwon Suh, 2020. "A review of methods for characterizing the environmental consequences of actions in life cycle assessment," Journal of Industrial Ecology, Yale University, vol. 24(4), pages 815-829, August.
    4. Goglio, Pietro & Moakes, Simon & Knudsen, Marie Trydeman & Van Mierlo, Klara & Adams, Nina & Maxime, Fossey & Maresca, Alberto & Romero-Huelva, Manuel & Waqas, Muhammad Ahmed & Smith, Laurence G. & Gr, 2024. "Harmonizing methods to account for soil nitrous oxide emissions in Life Cycle Assessment of agricultural systems," Agricultural Systems, Elsevier, vol. 219(C).
    5. Bolier Torres & Carlos Bravo & Alexandra Torres & Cristhian Tipán-Torres & Julio C. Vargas & Robinson J. Herrera-Feijoo & Marco Heredia-R & Cecilio Barba & Antón García, 2022. "Carbon Stock Assessment in Silvopastoral Systems along an Elevational Gradient: A Study from Cattle Producers in the Sumaco Biosphere Reserve, Ecuadorian Amazon," Sustainability, MDPI, vol. 15(1), pages 1-14, December.
    6. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Sun, Xiaolu & Qian, Linjun & Cao, Yidan & Wang, Minghui & Li, Ning & Pang, Ruyue & Si, Tong & Yu, Xiaona & Zhang, Xiaojun & Zuza, Emmanuel Junior & Zou, Xiaoxia, 2024. "Exploration of the optimal low-carbon peanut rotation system in South China," Agricultural Systems, Elsevier, vol. 221(C).
    8. Ortiz, Carina A. & Liski, Jari & Gärdenäs, Annemieke I. & Lehtonen, Aleksi & Lundblad, Mattias & Stendahl, Johan & Ågren, Göran I. & Karltun, Erik, 2013. "Soil organic carbon stock changes in Swedish forest soils—A comparison of uncertainties and their sources through a national inventory and two simulation models," Ecological Modelling, Elsevier, vol. 251(C), pages 221-231.
    9. Ymène Fouli & Margot Hurlbert & Roland Kröbel, 2021. "Greenhouse Gas Emissions From Canadian Agriculture: Estimates and Measurements," SPP Briefing Papers, The School of Public Policy, University of Calgary, vol. 14(35), November.
    10. Dan Adino & Rose Ondiek, 2025. "The Impacts of Climate Change and Variability on Food Security among the Rendille Pastoralist Households," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 9(15), pages 712-720, May.
    11. Revoyron, Eva & Le Bail, Marianne & Meynard, Jean-Marc & Gunnarsson, Anita & Seghetti, Marco & Colombo, Luca, 2022. "Diversity and drivers of crop diversification pathways of European farms," Agricultural Systems, Elsevier, vol. 201(C).
    12. OKORIE, Benedict Odinaka & NIRAJ, Yadav, . "Effects Of Different Tillage Practices On Soil Fertility Properties: A Review," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 8(01).
    13. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    14. Richard Plevin & Mark Delucchi & Felix Creutzig, 2014. "Response to Comments on “Using Attributional Life Cycle Assessment to Estimate Climate-Change Mitigation …”," Journal of Industrial Ecology, Yale University, vol. 18(3), pages 468-470, May.
    15. Oliver Lazarus & Sonali McDermid & Jennifer Jacquet, 2021. "The climate responsibilities of industrial meat and dairy producers," Climatic Change, Springer, vol. 165(1), pages 1-21, March.
    16. Hashimoto, Shoji & Morishita, Tomoaki & Sakata, Tadashi & Ishizuka, Shigehiro & Kaneko, Shinji & Takahashi, Masamichi, 2011. "Simple models for soil CO2, CH4, and N2O fluxes calibrated using a Bayesian approach and multi-site data," Ecological Modelling, Elsevier, vol. 222(7), pages 1283-1292.
    17. Rose A Graves & Ryan D Haugo & Andrés Holz & Max Nielsen-Pincus & Aaron Jones & Bryce Kellogg & Cathy Macdonald & Kenneth Popper & Michael Schindel, 2020. "Potential greenhouse gas reductions from Natural Climate Solutions in Oregon, USA," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-30, April.
    18. Shang, Hua & Jiang, Li & Kumar Mangla, Sachin & Pan, Xiongfeng & Song, Malin, 2024. "Examining the role of national governance capacity in building the global low-carbon agricultural supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    19. Manuel González-Rosado & Luis Parras-Alcántara & Jesús Aguilera-Huertas & Beatriz Lozano-García, 2021. "Building an Agroecological Process towards Agricultural Sustainability: A Case Study from Southern Spain," Agriculture, MDPI, vol. 11(10), pages 1-16, October.
    20. Pradhan, Amaresh & Rana, K.S. & Choudhary, Anil K. & Bana, R.S. & Thapa, Shobit & Dash, Amit K. & Singh, Jyoti P. & Kumar, Amit & Harish, M.N. & Hasanain, Mohammad & Kumar, Adarsh, 2025. "Dual-crop basis residue-retained bed-planting and zinc fertilization lead to improved food-energy-water-carbon nexus in pearl millet-wheat cropping system in semi-arid agro-ecologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:227:y:2025:i:c:s0308521x25001015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.