IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-08636-w.html
   My bibliography  Save this article

Soil carbon sequestration accelerated by restoration of grassland biodiversity

Author

Listed:
  • Yi Yang

    (University of Minnesota)

  • David Tilman

    (University of Minnesota
    University of California)

  • George Furey

    (University of Minnesota)

  • Clarence Lehman

    (University of Minnesota)

Abstract

Agriculturally degraded and abandoned lands can remove atmospheric CO2 and sequester it as soil organic matter during natural succession. However, this process may be slow, requiring a century or longer to re-attain pre-agricultural soil carbon levels. Here, we find that restoration of late-successional grassland plant diversity leads to accelerating annual carbon storage rates that, by the second period (years 13–22), are 200% greater in our highest diversity treatment than during succession at this site, and 70% greater than in monocultures. The higher soil carbon storage rates of the second period (years 13–22) are associated with the greater aboveground production and root biomass of this period, and with the presence of multiple species, especially C4 grasses and legumes. Our results suggest that restoration of high plant diversity may greatly increase carbon capture and storage rates on degraded and abandoned agricultural lands.

Suggested Citation

  • Yi Yang & David Tilman & George Furey & Clarence Lehman, 2019. "Soil carbon sequestration accelerated by restoration of grassland biodiversity," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08636-w
    DOI: 10.1038/s41467-019-08636-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-08636-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-08636-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Małgorzata Kozak & Rafał Pudełko, 2021. "Impact Assessment of the Long-Term Fallowed Land on Agricultural Soils and the Possibility of Their Return to Agriculture," Agriculture, MDPI, vol. 11(2), pages 1-16, February.
    2. Qiao Xu & Yan Wei & Xinfeng Zhao & Hailiang Xu, 2022. "Dynamics of Soil Carbon Fractions and Carbon Stability in Relation to Grassland Degradation in Xinjiang, Northwest China," Sustainability, MDPI, vol. 14(10), pages 1-11, May.
    3. Waldemar Zielewicz & Dorota Swędrzyńska & Arkadiusz Swędrzyński & Witold Grzebisz & Piotr Goliński, 2022. "The Influence of Calcium Sulfate and Different Doses of Potassium on the Soil Enzyme Activity and the Yield of the Sward with a Mixture of Alfalfa and Grasses," Agriculture, MDPI, vol. 12(4), pages 1-13, March.
    4. Köninger, Julia & Lugato, Emanuele & Panagos, Panos & Kochupillai, Mrinalini & Orgiazzi, Alberto & Briones, Maria J.I., 2021. "Manure management and soil biodiversity: Towards more sustainable food systems in the EU," Agricultural Systems, Elsevier, vol. 194(C).
    5. Vasileios Tsolis & Pantelis Barouchas, 2023. "Biochar as Soil Amendment: The Effect of Biochar on Soil Properties Using VIS-NIR Diffuse Reflectance Spectroscopy, Biochar Aging and Soil Microbiology—A Review," Land, MDPI, vol. 12(8), pages 1-41, August.
    6. Jarmila Makovníková & Stanislav Kološta & Filip Flaška & Boris Pálka, 2023. "Factors Influencing the Spatial Distribution of Regulating Agro-Ecosystem Services in Agriculture Soils: A Case Study of Slovakia," Agriculture, MDPI, vol. 13(5), pages 1-22, April.
    7. Wirth, Stephen Björn & Taubert, Franziska & Tietjen, Britta & Müller, Christoph & Rolinski, Susanne, 2021. "Do details matter? Disentangling the processes related to plant species interactions in two grassland models of different complexity," Ecological Modelling, Elsevier, vol. 460(C).
    8. Yi Yang & Beibei Liu & Peng Wang & Wei‐Qiang Chen & Timothy M. Smith, 2020. "Toward sustainable climate change adaptation," Journal of Industrial Ecology, Yale University, vol. 24(2), pages 318-330, April.
    9. Tong-Hui Wu & Yu-Fu Hu & Yan-Yan Zhang & Xiang-Yang Shu & Ze-Peng Yang & Wei Zhou & Cheng-Yi Huang & Jie Li & Zhi Li & Jia He & Ying Yu, 2022. "Changes in soil organic carbon and its fractions under grassland reclamation in alpine-cold soils, China," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 17(4), pages 211-221.
    10. Wolff, Saskia & Hüttel, Silke & Nendel, Claas & Lakes, Tobia, 2020. "Identifying agricultural landscape types for Brandenburg, Germany using IACS data," FORLand Working Papers 23 (2020), Humboldt University Berlin, DFG Research Unit 2569 FORLand "Agricultural Land Markets – Efficiency and Regulation".
    11. Marie Spohn & Sumanta Bagchi & Lori A. Biederman & Elizabeth T. Borer & Kari Anne Bråthen & Miguel N. Bugalho & Maria C. Caldeira & Jane A. Catford & Scott L. Collins & Nico Eisenhauer & Nicole Hagena, 2023. "The positive effect of plant diversity on soil carbon depends on climate," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Hongying Zhang & Zongjun Gao & Mengjie Shi & Shaoyan Fang, 2020. "Soil Bacterial Diversity and Its Relationship with Soil CO 2 and Mineral Composition: A Case Study of the Laiwu Experimental Site," IJERPH, MDPI, vol. 17(16), pages 1-20, August.
    13. Drew A. Scott & Kathryn D. Eckhoff & Nicola Lorenz & Richard Dick & Rebecca M. Swab, 2021. "Diversity Is Not Everything," Land, MDPI, vol. 10(10), pages 1-20, October.
    14. Júlia Graziela da Silveira & Sílvio Nolasco de Oliveira Neto & Ana Carolina Barbosa do Canto & Fernanda Figueiredo Granja Dorilêo Leite & Fernanda Reis Cordeiro & Luís Tadeu Assad & Gabriela Cristina , 2022. "Land Use, Land Cover Change and Sustainable Intensification of Agriculture and Livestock in the Amazon and the Atlantic Forest in Brazil," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    15. Bolier Torres & Carlos Bravo & Alexandra Torres & Cristhian Tipán-Torres & Julio C. Vargas & Robinson J. Herrera-Feijoo & Marco Heredia-R & Cecilio Barba & Antón García, 2022. "Carbon Stock Assessment in Silvopastoral Systems along an Elevational Gradient: A Study from Cattle Producers in the Sumaco Biosphere Reserve, Ecuadorian Amazon," Sustainability, MDPI, vol. 15(1), pages 1-14, December.
    16. Cezary A. Kwiatkowski & Małgorzata Pawłowska & Elżbieta Harasim & Lucjan Pawłowski, 2023. "Strategies of Climate Change Mitigation in Agriculture Plant Production—A Critical Review," Energies, MDPI, vol. 16(10), pages 1-27, May.
    17. Liudmila Tripolskaja & Asta Kazlauskaite-Jadzevice & Virgilijus Baliuckas & Almantas Razukas, 2021. "Natural and Managed Grasslands Productivity during Multiyear in Ex-Arable Lands (in the Context of Climate Change)," Agriculture, MDPI, vol. 11(3), pages 1-13, March.
    18. Jian Zhang & Hengxing Xiang & Shizuka Hashimoto & Toshiya Okuro, 2021. "Observational Scale Matters for Ecosystem Services Interactions and Spatial Distributions: A Case Study of the Ussuri Watershed, China," Sustainability, MDPI, vol. 13(19), pages 1-16, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08636-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.