IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59761-8.html
   My bibliography  Save this article

Coinciding spring and autumn frosts have a limited impact on carbon fluxes in a grassland ecosystem

Author

Listed:
  • Juanjuan Han

    (Southwest University)

  • Chaowei Tan

    (Southwest University)

  • Jingyi Ru

    (Hebei University)

  • Jian Song

    (Hebei University)

  • Dafeng Hui

    (Tennessee State University)

  • Shiqiang Wan

    (Hebei University)

Abstract

Frosts, increasingly prevalent due to climate warming, can offset the carbon storage benefits of an extended growing season, potentially exacerbating climate warming. However, existing research primarily focus on species, with limited evidence on carbon fluxes at the ecosystem scale. Using a manipulative experiment simulating 7-day frosts in a temperate grassland, we find that ongoing frosts, whether in spring or autumn, have limited effects on gross ecosystem productivity, ecosystem respiration, and net ecosystem productivity during the frost measurement periods. However, frosts profoundly impact net ecosystem productivity over the entire growing season outside the frost measurement periods. Specifically, spring frosts significantly increase net ecosystem productivity, autumn frosts marginal decrease it, and the combined effect of both frosts neutralize net ecosystem productivity. The early-year (2018–2020) impacts of frosts on net ecosystem productivity may be driven by plant eco-physiological changes, whereas the late-year impacts (2021–2023) were attributed to shifts in plant community structure. Our findings suggest that frequent frosts in both seasons may not stimulate ecosystem carbon release in temperate grasslands. Understanding these patterns is crucial for predicting carbon balance and developing effective climate-change mitigation strategies in response to the future warmer climate.

Suggested Citation

  • Juanjuan Han & Chaowei Tan & Jingyi Ru & Jian Song & Dafeng Hui & Shiqiang Wan, 2025. "Coinciding spring and autumn frosts have a limited impact on carbon fluxes in a grassland ecosystem," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59761-8
    DOI: 10.1038/s41467-025-59761-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59761-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59761-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59761-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.