IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i12p4363-d184946.html
   My bibliography  Save this article

Monitoring NDVI Inter-Annual Behavior in Mountain Areas of Mainland Spain (2001–2016)

Author

Listed:
  • Patricia Arrogante-Funes

    (Departamento de Tecnología Química y Ambiental, Universidad Rey Juan Carlos, 28933 Móstoles, Spain)

  • Carlos J. Novillo

    (Departamento de Tecnología Química y Ambiental, Universidad Rey Juan Carlos, 28933 Móstoles, Spain)

  • Raúl Romero-Calcerrada

    (Departamento de Ciencias de la Educación, Universidad Rey Juan Carlos, 28032 Madrid, Spain)

Abstract

Currently, there exists growing evidence that warming is amplified with elevation resulting in rapid changes in temperature, humidity and water in mountainous areas. The latter might result in considerable damage to forest and agricultural land cover, affecting all the ecosystem services and the socio-economic development that these mountain areas provide. The Mediterranean mountains, moreover, which host a high diversity of natural species, are more vulnerable to global change than other European ecosystems. The protected areas of the mountain ranges of peninsular Spain could help preserve natural resources and landscapes, as well as promote scientific research and the sustainable development of local populations. The temporal statistical trends (2001–2016) of the MODIS13Q1 Normalized Difference Vegetation Index (NDVI) interannual dynamics are analyzed to explore whether the NDVI trends are found uniformly within the mountain ranges of mainland Spain (altitude > 1000 m), as well as in the protected or non-protected mountain areas. Second, to determine if there exists a statistical association between finding an NDVI trend and the specific mountain ranges, protected or unprotected areas are studied. Third, a possible association between cover types in pure pixels using CORINE (Co-ordination of Information on the Environment) land cover cartography is studied and land cover changes between 2000 and 2006 and between 2006 and 2012 are calculated for each mountainous area. Higher areas are observed to have more positive NDVI trends than negative in mountain areas located in mainland Spain during the 2001–2016 period. The growing of vegetation, therefore, was greater than its decrease in the study area. Moreover, differences in the size of the area between growth and depletion of vegetation patterns along the different mountains are found. Notably, more negatives than expected are found, and fewer positives are found than anticipated in the mountains, such as the Cordillera Cantábrica (C.Cant.) or Montes de Murcia y Alicante (M.M.A). Quite the reverse happened in Pirineos (Pir.) and Montes de Cádiz y Málaga (M.C.M.), among others. The statistical association between the trends found and the land cover types is also observed. The differences observed can be explained since the mountain ranges in this study are defined by climate, land cover, human usage and, to a small degree, by land cover changes, but further detailed research is needed to get in-depth detailed conclusions. Conversely, it is found that, in protected mountain areas, a lower NDVI pixels trend than expected (>20%) occurs, whereas it is less than anticipated in unprotected mountain areas. This could be caused by management and the land cover type.

Suggested Citation

  • Patricia Arrogante-Funes & Carlos J. Novillo & Raúl Romero-Calcerrada, 2018. "Monitoring NDVI Inter-Annual Behavior in Mountain Areas of Mainland Spain (2001–2016)," Sustainability, MDPI, vol. 10(12), pages 1-24, November.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4363-:d:184946
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/12/4363/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/12/4363/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. V. Trouet & F. Babst & M. Meko, 2018. "Recent enhanced high-summer North Atlantic Jet variability emerges from three-century context," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    2. Markus Reichstein & Michael Bahn & Philippe Ciais & Dorothea Frank & Miguel D. Mahecha & Sonia I. Seneviratne & Jakob Zscheischler & Christian Beer & Nina Buchmann & David C. Frank & Dario Papale & An, 2013. "Climate extremes and the carbon cycle," Nature, Nature, vol. 500(7462), pages 287-295, August.
    3. R. B. Myneni & C. D. Keeling & C. J. Tucker & G. Asrar & R. R. Nemani, 1997. "Increased plant growth in the northern high latitudes from 1981 to 1991," Nature, Nature, vol. 386(6626), pages 698-702, April.
    4. Yi Y. Liu & Albert I. J. M. van Dijk & Richard A. M. de Jeu & Josep G. Canadell & Matthew F. McCabe & Jason P. Evans & Guojie Wang, 2015. "Recent reversal in loss of global terrestrial biomass," Nature Climate Change, Nature, vol. 5(5), pages 470-474, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ionuț-Adrian Drăguleasa & Amalia Niță & Mirela Mazilu & Gheorghe Curcan, 2023. "Spatio-Temporal Distribution and Trends of Major Agricultural Crops in Romania Using Interactive Geographic Information System Mapping," Sustainability, MDPI, vol. 15(20), pages 1-25, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isabel Dorado-Liñán & Blanca Ayarzagüena & Flurin Babst & Guobao Xu & Luis Gil & Giovanna Battipaglia & Allan Buras & Vojtěch Čada & J. Julio Camarero & Liam Cavin & Hugues Claessens & Igor Drobyshev , 2022. "Jet stream position explains regional anomalies in European beech forest productivity and tree growth," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Xiaojun Li & Philippe Ciais & Rasmus Fensholt & Jérome Chave & Stephen Sitch & Josep G. Canadell & Martin Brandt & Lei Fan & Xiangming Xiao & Shengli Tao & Huan Wang & Clément Albergel & Hui Yang & Fr, 2025. "Large live biomass carbon losses from droughts in the northern temperate ecosystems during 2016-2022," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    3. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    4. Antonella Fatica & Alessio Manzo & Erika Di Iorio & Luana Circelli & Francesco Fantuz & Luca Todini & Thomas W. Crawford & Claudio Colombo & Elisabetta Salimei, 2025. "Apennine Natural Pasture Areas: Soil, Plant, and Livestock Interactions and Ecosystem Characterization," Sustainability, MDPI, vol. 17(12), pages 1-19, June.
    5. Liu, Xiaoxu & Liu, Xiaomin & Yang, Yaotian & Yu, Miao & Tian, Hailong, 2024. "The productivity anomalies and economic losses of different grassland ecosystems caused by flash drought," Agricultural Water Management, Elsevier, vol. 305(C).
    6. Liangsheng Zhang & Haijiang Luo & Xuezhen Zhang, 2022. "Land-Greening Hotspot Changes in the Yangtze River Economic Belt during the Last Four Decades and Their Connections to Human Activities," Land, MDPI, vol. 11(5), pages 1-17, April.
    7. F. Nelson & O. Anisimov & N. Shiklomanov, 2002. "Climate Change and Hazard Zonation in the Circum-Arctic Permafrost Regions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 26(3), pages 203-225, July.
    8. Zbigniew W. Kundzewicz & Adam Choryński & Janusz Olejnik & Hans J. Schellnhuber & Marek Urbaniak & Klaudia Ziemblińska, 2023. "Climate Change Science and Policy—A Guided Tour across the Space of Attitudes and Outcomes," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    9. Viktoriia Lovynska & Yuriy Buchavyi & Petro Lakyda & Svitlana Sytnyk & Yuriy Gritzan & Roman Sendziuk, 2020. "Assessment of pine aboveground biomass within Northern Steppe of Ukraine using Sentinel-2 data," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 66(8), pages 339-348.
    10. Zhang, Yixiao & He, Tao & Liang, Shunlin & Zhao, Zhongguo, 2023. "A framework for estimating actual evapotranspiration through spatial heterogeneity-based machine learning approaches," Agricultural Water Management, Elsevier, vol. 289(C).
    11. Juanjuan Han & Chaowei Tan & Jingyi Ru & Jian Song & Dafeng Hui & Shiqiang Wan, 2025. "Coinciding spring and autumn frosts have a limited impact on carbon fluxes in a grassland ecosystem," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    12. Craig D. Idso, 2001. "Earth's Rising Atmospheric Co2 Concentration: Impacts on the Biosphere," Energy & Environment, , vol. 12(4), pages 287-310, July.
    13. Jörg Kaduk & Sietse Los, 2011. "Predicting the time of green up in temperate and boreal biomes," Climatic Change, Springer, vol. 107(3), pages 277-304, August.
    14. Lausch, Angela & Salbach, Christoph & Schmidt, Andreas & Doktor, Daniel & Merbach, Ines & Pause, Marion, 2015. "Deriving phenology of barley with imaging hyperspectral remote sensing," Ecological Modelling, Elsevier, vol. 295(C), pages 123-135.
    15. Yue He & Shilong Piao & Philippe Ciais & Hao Xu & Thomas Gasser, 2024. "Future land carbon removals in China consistent with national inventory," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Mette, Tobias & Albrecht, Axel & Ammer, Christian & Biber, Peter & Kohnle, Ulrich & Pretzsch, Hans, 2009. "Evaluation of the forest growth simulator SILVA on dominant trees in mature mixed Silver fir–Norway spruce stands in South-West Germany," Ecological Modelling, Elsevier, vol. 220(13), pages 1670-1680.
    17. Sven Teske & Thomas Pregger & Sonja Simon & Tobias Naegler & Johannes Pagenkopf & Özcan Deniz & Bent van den Adel & Kate Dooley & Malte Meinshausen, 2021. "It Is Still Possible to Achieve the Paris Climate Agreement: Regional, Sectoral, and Land-Use Pathways," Energies, MDPI, vol. 14(8), pages 1-25, April.
    18. Zefeng Chen & Weiguang Wang & Giovanni Forzieri & Alessandro Cescatti, 2024. "Transition from positive to negative indirect CO2 effects on the vegetation carbon uptake," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. John M. Humphreys & Robert B. Srygley & David H. Branson, 2022. "Geographic Variation in Migratory Grasshopper Recruitment under Projected Climate Change," Geographies, MDPI, vol. 2(1), pages 1-19, January.
    20. Jingai Bai & Tingbao Xu, 2025. "Investigating the Zonal Response of Spatiotemporal Dynamics of Australian Grasslands to Ongoing Climate Change," Land, MDPI, vol. 14(2), pages 1-20, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4363-:d:184946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.