IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i2p148-d497621.html
   My bibliography  Save this article

Impact Assessment of the Long-Term Fallowed Land on Agricultural Soils and the Possibility of Their Return to Agriculture

Author

Listed:
  • Małgorzata Kozak

    (Department of Bioeconomy and Systems Analysis, Institute of Soil Science and Plant Cultivation—State Research Institute (IUNG-PIB), 24-100 Puławy, Poland)

  • Rafał Pudełko

    (Department of Bioeconomy and Systems Analysis, Institute of Soil Science and Plant Cultivation—State Research Institute (IUNG-PIB), 24-100 Puławy, Poland)

Abstract

Agricultural land abandonment is a process observed in most European countries. In Poland and other countries of Central and Eastern Europe, it was initiated with the political transformation of the 1990s. Currently, in Poland, it concerns over 2 million ha of arable land. Such a large acreage constitutes a resource of land that can be directly restored to agricultural production or perform environmental functions. A new concept for management of fallow/abandoned areas is to start producing biomass for the bioeconomy purposes. Production of perennial crops, especially on poorer soils, requires an appropriate assessment of soil conditions. Therefore, it has become crucial to answer the question: What is the real impact of the fallowing process on soil, and is it possible to return it to production at all? For this purpose, on the selected fallowed land that met the marginality criteria defined under the project, physicochemical tests of soil properties were carried out, and subsequently, the results were compared with those of the neighboring agricultural land and with the soil valuation of the fallow land, which was conducted during its past agricultural use. The work was mainly aimed at analyzing the impact of long-term fallowing on soil pH, carbon sequestration and nutrient content, e.g., phosphorus and potassium. The result of the work is a positive assessment of the possibility of restoring fallowed land for agricultural production, including the production of biomass for non-agricultural purposes. Among the studied types of fallow plots, the fields where goldenrod ( Solidago L. —invasive species) appeared were indicated as the areas most affected by soil degradation.

Suggested Citation

  • Małgorzata Kozak & Rafał Pudełko, 2021. "Impact Assessment of the Long-Term Fallowed Land on Agricultural Soils and the Possibility of Their Return to Agriculture," Agriculture, MDPI, vol. 11(2), pages 1-16, February.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:2:p:148-:d:497621
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/2/148/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/2/148/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mariusz Matyka & Paweł Radzikowski, 2020. "Productivity and Biometric Characteristics of 11 Varieties of Willow Cultivated on Marginal Soil," Agriculture, MDPI, vol. 10(12), pages 1-10, December.
    2. Stolarski, Mariusz J. & Niksa, Dariusz & Krzyżaniak, Michał & Tworkowski, Józef & Szczukowski, Stefan, 2019. "Willow productivity from small- and large-scale experimental plantations in Poland from 2000 to 2017," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 461-475.
    3. Adam Kleofas Berbeć & Mariusz Matyka, 2020. "Planting Density Effects on Grow Rate, Biometric Parameters, and Biomass Calorific Value of Selected Trees Cultivated as SRC," Agriculture, MDPI, vol. 10(12), pages 1-17, November.
    4. Yi Yang & David Tilman & George Furey & Clarence Lehman, 2019. "Soil carbon sequestration accelerated by restoration of grassland biodiversity," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    5. Paweł Radzikowski & Mariusz Matyka & Adam Kleofas Berbeć, 2020. "Biodiversity of Weeds and Arthropods in Five Different Perennial Industrial Crops in Eastern Poland," Agriculture, MDPI, vol. 10(12), pages 1-27, December.
    6. Moritz Von Cossel & Iris Lewandowski & Berien Elbersen & Igor Staritsky & Michiel Van Eupen & Yasir Iqbal & Stefan Mantel & Danilo Scordia & Giorgio Testa & Salvatore Luciano Cosentino & Oksana Maliar, 2019. "Marginal Agricultural Land Low-Input Systems for Biomass Production," Energies, MDPI, vol. 12(16), pages 1-25, August.
    7. Mariusz Jerzy Stolarski & Stefan Szczukowski & Michał Krzyżaniak & Józef Tworkowski, 2020. "Energy Value of Yield and Biomass Quality in a 7-Year Rotation of Willow Cultivated on Marginal Soil," Energies, MDPI, vol. 13(9), pages 1-12, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. N. Devaraju & Rémi Prudhomme & Anna Lungarska & Xuhui Wang & Zun Yin & Nathalie de Noblet-Decoudré & Raja R. Chakir & Pierre-Alain Jayet & Thierry Brunelle & Nicolas Viovy & Adriana De Palma & Ricardo, 2022. "How reducing synthetic nitrogen in Europe affects ecosystem carbon and biodiversity: two perspectives of the same policy [Comment la réduction de l'azote synthétique en Europe affecte le carbone et," CIRED Working Papers hal-03763653, HAL.
    2. Lucia Toková & Slavomír Hološ & Peter Šurda & Jozef Kollár & Ľubomír Lichner, 2022. "Impact of Duration of Land Abandonment on Infiltration and Surface Runoff in Acidic Sandy Soil," Agriculture, MDPI, vol. 12(2), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariusz Jerzy Stolarski, 2021. "Industrial and Bioenergy Crops for Bioeconomy Development," Agriculture, MDPI, vol. 11(9), pages 1-5, September.
    2. Mariusz Jerzy Stolarski & Michał Krzyżaniak & Kazimierz Warmiński & Dariusz Załuski & Ewelina Olba-Zięty, 2020. "Willow Biomass as Energy Feedstock: The Effect of Habitat, Genotype and Harvest Rotation on Thermophysical Properties and Elemental Composition," Energies, MDPI, vol. 13(16), pages 1-17, August.
    3. Mariusz Matyka & Paweł Radzikowski, 2020. "Productivity and Biometric Characteristics of 11 Varieties of Willow Cultivated on Marginal Soil," Agriculture, MDPI, vol. 10(12), pages 1-10, December.
    4. Mariusz Jerzy Stolarski & Stefan Szczukowski & Michał Krzyżaniak & Józef Tworkowski, 2020. "Energy Value of Yield and Biomass Quality in a 7-Year Rotation of Willow Cultivated on Marginal Soil," Energies, MDPI, vol. 13(9), pages 1-12, April.
    5. Dubis, Bogdan & Jankowski, Krzysztof Józef & Załuski, Dariusz & Sokólski, Mateusz, 2020. "The effect of sewage sludge fertilization on the biomass yield of giant miscanthus and the energy balance of the production process," Energy, Elsevier, vol. 206(C).
    6. Jankowski, Krzysztof Józef & Dubis, Bogdan & Sokólski, Mateusz Mikołaj & Załuski, Dariusz & Bórawski, Piotr & Szempliński, Władysław, 2019. "Biomass yield and energy balance of Virginia fanpetals in different production technologies in north-eastern Poland," Energy, Elsevier, vol. 185(C), pages 612-623.
    7. Carlos S. Ciria & Carlos M. Sastre & Juan Carrasco & Pilar Ciria, 2020. "Tall wheatgrass (Thinopyrum ponticum (Podp)) in a real farm context, a sustainable perennial alternative to rye (Secale cereale L.) cultivation in marginal lands," Papers 2003.13395, arXiv.org.
    8. Tong-Hui Wu & Yu-Fu Hu & Yan-Yan Zhang & Xiang-Yang Shu & Ze-Peng Yang & Wei Zhou & Cheng-Yi Huang & Jie Li & Zhi Li & Jia He & Ying Yu, 2022. "Changes in soil organic carbon and its fractions under grassland reclamation in alpine-cold soils, China," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 17(4), pages 211-221.
    9. Hongying Zhang & Zongjun Gao & Mengjie Shi & Shaoyan Fang, 2020. "Soil Bacterial Diversity and Its Relationship with Soil CO 2 and Mineral Composition: A Case Study of the Laiwu Experimental Site," IJERPH, MDPI, vol. 17(16), pages 1-20, August.
    10. Moritz von Cossel & Andrea Bauerle & Meike Boob & Ulrich Thumm & Martin Elsaesser & Iris Lewandowski, 2019. "The Performance of Mesotrophic Arrhenatheretum Grassland under Different Cutting Frequency Regimes for Biomass Production in Southwest Germany," Agriculture, MDPI, vol. 9(9), pages 1-17, September.
    11. Maria Janicka & Aneta Kutkowska & Jakub Paderewski, 2021. "Diversity of Segetal Flora in Salix viminalis L. Crops Established on Former Arable and Fallow Lands in Central Poland," Agriculture, MDPI, vol. 11(1), pages 1-24, January.
    12. Liudmila Tripolskaja & Asta Kazlauskaite-Jadzevice & Virgilijus Baliuckas & Almantas Razukas, 2021. "Natural and Managed Grasslands Productivity during Multiyear in Ex-Arable Lands (in the Context of Climate Change)," Agriculture, MDPI, vol. 11(3), pages 1-13, March.
    13. Jian Zhang & Hengxing Xiang & Shizuka Hashimoto & Toshiya Okuro, 2021. "Observational Scale Matters for Ecosystem Services Interactions and Spatial Distributions: A Case Study of the Ussuri Watershed, China," Sustainability, MDPI, vol. 13(19), pages 1-16, September.
    14. Von Cossel, M. & Lebendig, F. & Müller, M. & Hieber, C. & Iqbal, Y. & Cohnen, J. & Jablonowski, N.D., 2022. "Improving combustion quality of Miscanthus by adding biomass from perennial flower-rich wild plant species," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Kwiatkowski, Jacek & Graban, Łukasz & Stolarski, Mariusz J., 2023. "The energy efficiency of Virginia fanpetals biomass production for solid biofuel," Energy, Elsevier, vol. 264(C).
    16. Mariusz Jerzy Stolarski & Paweł Dudziec & Michał Krzyżaniak & Ewelina Olba-Zięty, 2021. "Solid Biomass Energy Potential as a Development Opportunity for Rural Communities," Energies, MDPI, vol. 14(12), pages 1-21, June.
    17. Vera, Ivan & Wicke, Birka & Lamers, Patrick & Cowie, Annette & Repo, Anna & Heukels, Bas & Zumpf, Colleen & Styles, David & Parish, Esther & Cherubini, Francesco & Berndes, Göran & Jager, Henriette & , 2022. "Land use for bioenergy: Synergies and trade-offs between sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    18. Stolarski, Mariusz Jerzy & Warmiński, Kazimierz & Krzyżaniak, Michał & Olba–Zięty, Ewelina & Stachowicz, Paweł, 2020. "Energy consumption and heating costs for a detached house over a 12-year period – Renewable fuels versus fossil fuels," Energy, Elsevier, vol. 204(C).
    19. Drew A. Scott & Kathryn D. Eckhoff & Nicola Lorenz & Richard Dick & Rebecca M. Swab, 2021. "Diversity Is Not Everything," Land, MDPI, vol. 10(10), pages 1-20, October.
    20. Kiefer, Katharina & Kremer, Jasper & Zeitner, Philipp & Winkler, Bastian & Wagner, Moritz & von Cossel, Moritz, 2023. "Monetizing ecosystem services of perennial wild plant mixtures for bioenergy," Ecosystem Services, Elsevier, vol. 61(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:2:p:148-:d:497621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.