IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v175y2019icp46-57.html
   My bibliography  Save this article

Comparative Energy-Landscape Integrated Analysis (ELIA) of past and present agroecosystems in North America and Europe from the 1830s to the 2010s

Author

Listed:
  • Marull, Joan
  • Cattaneo, Claudio
  • Gingrich, Simone
  • de Molina, Manuel González
  • Guzmán, Gloria I.
  • Watson, Andrew
  • MacFadyen, Joshua
  • Pons, Manel
  • Tello, Enric

Abstract

Along the last century there has been an unprecedented growth in both global food production and related socioecological impacts. The objective of this paper is to analyse the effects of long-term metabolic patterns of agrarian systems on land use and cover changes (LUCC). We have developed an Energy-Landscape Integrated Analysis (ELIA) of agroecosystems to measure the energy storage (E) and the information (I) represented by the complexity of internal energy cycles, in order to correlate both with the energy imprint in the landscape functional-structure (L) that sustains biodiversity. ELIA values are used to assess the agro-ecological landscape transitions in different case studies analysed in North America (Canada and USA) and Europe (Austria and Spain), demonstrating their sensitivity and robustness for case study comparisons on farm-driven environmental change. The results show two stages of the socio-metabolic transition: a first period (from 1830 to 1956) characterized by a non-significant decrease in energy reinvestment (E) and a decrease in energy redistribution (I); and a second period (from 1956 to 2000) with a significant loss of E·I optimal values and associated landscape patterns (L). To overcome the socioecological degradation that these trends implied requires a low external input strategy based on an innovative enhancement of cultural knowledge kept by rural populations, which may help to empower farm communities in the markets and in the public arena. Further research could help to reveal how and why different strategies of agroecosystem management lead to key turning points in the relationship between energy flows, landscape functioning and biodiversity. This research will be very useful for public policies aimed to promote more climate and socioecological resilience of agricultural landscapes and food systems worldwide.

Suggested Citation

  • Marull, Joan & Cattaneo, Claudio & Gingrich, Simone & de Molina, Manuel González & Guzmán, Gloria I. & Watson, Andrew & MacFadyen, Joshua & Pons, Manel & Tello, Enric, 2019. "Comparative Energy-Landscape Integrated Analysis (ELIA) of past and present agroecosystems in North America and Europe from the 1830s to the 2010s," Agricultural Systems, Elsevier, vol. 175(C), pages 46-57.
  • Handle: RePEc:eee:agisys:v:175:y:2019:i:c:p:46-57
    DOI: 10.1016/j.agsy.2019.05.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X19300824
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2019.05.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Tilman & Michael Clark, 2014. "Global diets link environmental sustainability and human health," Nature, Nature, vol. 515(7528), pages 518-522, November.
    2. Manuel González de Molina & Gloria I. Guzmán Casado, 2017. "Agroecology and Ecological Intensification. A Discussion from a Metabolic Point of View," Sustainability, MDPI, vol. 9(1), pages 1-19, January.
    3. David Tilman & Kenneth G. Cassman & Pamela A. Matson & Rosamond Naylor & Stephen Polasky, 2002. "Agricultural sustainability and intensive production practices," Nature, Nature, vol. 418(6898), pages 671-677, August.
    4. Juli Pausas & Santiago Fernández-Muñoz, 2012. "Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime," Climatic Change, Springer, vol. 110(1), pages 215-226, January.
    5. Helmut Haberl, 2001. "The Energetic Metabolism of Societies: Part II: Empirical Examples," Journal of Industrial Ecology, Yale University, vol. 5(2), pages 71-88, April.
    6. Helmut Haberl, 2001. "The Energetic Metabolism of Societies Part I: Accounting Concepts," Journal of Industrial Ecology, Yale University, vol. 5(1), pages 11-33, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aguilera, Eduardo & Díaz-Gaona, Cipriano & García-Laureano, Raquel & Reyes-Palomo, Carolina & Guzmán, Gloria I. & Ortolani, Livia & Sánchez-Rodríguez, Manuel & Rodríguez-Estévez, Vicente, 2020. "Agroecology for adaptation to climate change and resource depletion in the Mediterranean region. A review," Agricultural Systems, Elsevier, vol. 181(C).
    2. Marull, Joan & Pino, Joan & Melero, Yolanda & Tello, Enric, 2023. "Using thermodynamics to understand the links between energy, information, structure and biodiversity in a human-transformed landscape," Ecological Modelling, Elsevier, vol. 476(C).
    3. Guzmán, Gloria Isabel & Fernández, David Soto & Aguilera, Eduardo & Infante-Amate, Juan & de Molina, Manuel González, 2022. "The close relationship between biophysical degradation, ecosystem services and family farms decline in Spanish agriculture (1992–2017)," Ecosystem Services, Elsevier, vol. 56(C).
    4. Fullana Llinàs, O. & Tello Aragay, E. & Murray Mas, I. & Jover-Avellà, G. & Marull López, J., 2021. "Socio-ecological transition in a Mediterranean agroecosystem: What energy flows tell us about agricultural landscapes ruled by landlords, peasants and tourism (Mallorca, 1860-1956-2012)," Ecological Economics, Elsevier, vol. 190(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Willi Haas & Hailemariam Birke Andarge, 2017. "More Energy and Less Work, but New Crises: How the Societal Metabolism-Labour Nexus Changes from Agrarian to Industrial Societies," Sustainability, MDPI, vol. 9(7), pages 1-21, June.
    2. Marull, Joan & Pino, Joan & Melero, Yolanda & Tello, Enric, 2023. "Using thermodynamics to understand the links between energy, information, structure and biodiversity in a human-transformed landscape," Ecological Modelling, Elsevier, vol. 476(C).
    3. Cusso, Xavier & Garrabou, Ramon & Tello, Enric, 2006. "Social metabolism in an agrarian region of Catalonia (Spain) in 1860-1870: Flows, energy balance and land use," Ecological Economics, Elsevier, vol. 58(1), pages 49-65, June.
    4. Haberl, Helmut & Gaube, Veronika & Díaz-Delgado, Ricardo & Krauze, Kinga & Neuner, Angelika & Peterseil, Johannes & Plutzar, Christoph & Singh, Simron J. & Vadineanu, Angheluta, 2009. "Towards an integrated model of socioeconomic biodiversity drivers, pressures and impacts. A feasibility study based on three European long-term socio-ecological research platforms," Ecological Economics, Elsevier, vol. 68(6), pages 1797-1812, April.
    5. Singh, Kripal & Ansari, Faiz Ahmad & Ingle, Kapilkumar Nivrutti & Gupta, Sanjay Kumar & Ahirwal, Jitendra & Dhyani, Shalini & Singh, Shraddha & Abhilash, P.C. & Rawat, Ismael & Byun, Chaeho & Bux, Fai, 2023. "Microalgae from wastewaters to wastelands: Leveraging microalgal research conducive to achieve the UN Sustainable Development Goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    6. Paul Steenwyk & Matthew Kuperus Heun & Paul Brockway & Tânia Sousa & Sofia Henriques, 2022. "The Contributions of Muscle and Machine Work to Land and Labor Productivity in World Agriculture Since 1800," Biophysical Economics and Resource Quality, Springer, vol. 7(2), pages 1-17, June.
    7. Marull, Joan & Torabi, Parisa & Padró, Roc & Alabert, Aureli & La Rota, Maria José & Serrano, Tarik, 2020. "Energy-Landscape Optimization for Land Use Planning. Application in the Barcelona Metropolitan Area," Ecological Modelling, Elsevier, vol. 431(C).
    8. Antonio Barragán-Escandón & Julio Terrados-Cepeda & Esteban Zalamea-León, 2017. "The Role of Renewable Energy in the Promotion of Circular Urban Metabolism," Sustainability, MDPI, vol. 9(12), pages 1-29, December.
    9. Erb, Karl-Heinz & Haberl, Helmut & Plutzar, Christoph, 2012. "Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability," Energy Policy, Elsevier, vol. 47(C), pages 260-269.
    10. Haberl, Helmut, 2006. "The global socioeconomic energetic metabolism as a sustainability problem," Energy, Elsevier, vol. 31(1), pages 87-99.
    11. Alexander Urrego-Mesa & Juan Infante-Amate & Enric Tello, 2018. "Pastures and Cash Crops: Biomass Flows in the Socio-Metabolic Transition of Twentieth-Century Colombian Agriculture," Sustainability, MDPI, vol. 11(1), pages 1-28, December.
    12. Liao, Wenjie & Heijungs, Reinout & Huppes, Gjalt, 2012. "Thermodynamic analysis of human–environment systems: A review focused on industrial ecology," Ecological Modelling, Elsevier, vol. 228(C), pages 76-88.
    13. Zhang, Yan & Zheng, Hongmei & Fath, Brian D., 2014. "Analysis of the energy metabolism of urban socioeconomic sectors and the associated carbon footprints: Model development and a case study for Beijing," Energy Policy, Elsevier, vol. 73(C), pages 540-551.
    14. Kanianska, Radoslava & Gustafíková, Tatiana & Kizeková, Miriam & Kovanda, Jan, 2011. "Use of material flow accounting for assessment of energy savings: A case of biomass in Slovakia and the Czech Republic," Energy Policy, Elsevier, vol. 39(5), pages 2824-2832, May.
    15. Huang, Shu-Li & Lee, Chun-Lin & Chen, Chia-Wen, 2006. "Socioeconomic metabolism in Taiwan: Emergy synthesis versus material flow analysis," Resources, Conservation & Recycling, Elsevier, vol. 48(2), pages 166-196.
    16. Chen, Shaoqing & Chen, Bin, 2015. "Urban energy consumption: Different insights from energy flow analysis, input–output analysis and ecological network analysis," Applied Energy, Elsevier, vol. 138(C), pages 99-107.
    17. Elke Pirgmaier & Julia K. Steinberger, 2019. "Roots, Riots, and Radical Change—A Road Less Travelled for Ecological Economics," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    18. Farreny, Ramon & Gabarrell, Xavier & Rieradevall, Joan, 2008. "Energy intensity and greenhouse gas emission of a purchase in the retail park service sector: An integrative approach," Energy Policy, Elsevier, vol. 36(6), pages 1957-1968, June.
    19. Schenk, Niels J. & Moll, Henri C., 2007. "The use of physical indicators for industrial energy demand scenarios," Ecological Economics, Elsevier, vol. 63(2-3), pages 521-535, August.
    20. Han, Wenyi & Geng, Yong & Lu, Yangsiyu & Wilson, Jeffrey & Sun, Lu & Satoshi, Onishi & Geldron, Alain & Qian, Yiying, 2018. "Urban metabolism of megacities: A comparative analysis of Shanghai, Tokyo, London and Paris to inform low carbon and sustainable development pathways," Energy, Elsevier, vol. 155(C), pages 887-898.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:175:y:2019:i:c:p:46-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.