IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v167y2018icp113-124.html
   My bibliography  Save this article

Advancing a farmer decision support tool for agronomic decisions on rainfed and irrigated wheat cropping in Tasmania

Author

Listed:
  • Phelan, David C.
  • Harrison, Matthew T.
  • McLean, Greg
  • Cox, Howard
  • Pembleton, Kieth G.
  • Dean, Geoff J.
  • Parsons, David
  • do Amaral Richter, Maria E.
  • Pengilley, Georgie
  • Hinton, Sue J.
  • Mohammed, Caroline L.

Abstract

Well-designed agricultural decision support tools (DS) equip farmers with a rapid, easy way to compare multiple scenarios as well as the influence of different management strategies on crop production. One such tool, CropARM (http://www.armonline.com.au) assists users in establishing a framework of risk, with simulations incorporating climate scenarios and management actions, such as fertiliser rates, sowing time, row spacing, and irrigation regimes. When used in conjunction with soil and climate characteristics, biophysical model-based DS tools provide information that complements farmer experience and helps establish a framework for risk management given local climate characteristics. In this study, we used the APSIM model to provide the simulation data necessary to expand CropARM for new management conditions and environments in southern Australia. Prior to this work being undertaken, no CropARM data was available for Tasmania and no sites in CropARM allowed users to compare rainfed and irrigated wheat crops. This study collated data from 27 plots across ten sites in Tasmania, from the period 1981 to 2011, under both rainfed and irrigated conditions. APSIM was parameterised with these field observations and the subsequent scenario simulations were used to populate CropARM. Wheat cultivars used in the parameterisation of APSIM include Brennan, Isis, Mackeller, Revenue, Tennant (winter types) and Kellalac (spring type). The validation showed reliable model parameterisation, with an r2 value of close to 1, which is considered satisfactory. 670,680 simulations were undertaken and incorporated within the CropARM database for wheat cropping systems across Tasmania. With regularly updated climate streams, the free online framework provided by CropARM gives users the ability to assess downside risks associated with several different crop management alternatives, and by simultaneously comparing multiple scenarios, users can select management options that are likely to adhere most closely with their desired management objectives.

Suggested Citation

  • Phelan, David C. & Harrison, Matthew T. & McLean, Greg & Cox, Howard & Pembleton, Kieth G. & Dean, Geoff J. & Parsons, David & do Amaral Richter, Maria E. & Pengilley, Georgie & Hinton, Sue J. & Moham, 2018. "Advancing a farmer decision support tool for agronomic decisions on rainfed and irrigated wheat cropping in Tasmania," Agricultural Systems, Elsevier, vol. 167(C), pages 113-124.
  • Handle: RePEc:eee:agisys:v:167:y:2018:i:c:p:113-124
    DOI: 10.1016/j.agsy.2018.09.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X18306279
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hochman, Z. & Carberry, P.S., 2011. "Emerging consensus on desirable characteristics of tools to support farmers' management of climate risk in Australia," Agricultural Systems, Elsevier, vol. 104(6), pages 441-450, July.
    2. Zhao, Gang & Bryan, Brett A. & Song, Xiaodong, 2014. "Sensitivity and uncertainty analysis of the APSIM-wheat model: Interactions between cultivar, environmental, and management parameters," Ecological Modelling, Elsevier, vol. 279(C), pages 1-11.
    3. Lisson, S.N. & Cotching, W.E., 2011. "Modelling the fate of water and nitrogen in the mixed vegetable farming systems of northern Tasmania, Australia," Agricultural Systems, Elsevier, vol. 104(8), pages 600-608, October.
    4. Rose, David C. & Sutherland, William J. & Parker, Caroline & Lobley, Matt & Winter, Michael & Morris, Carol & Twining, Susan & Ffoulkes, Charles & Amano, Tatsuya & Dicks, Lynn V., 2016. "Decision support tools for agriculture: Towards effective design and delivery," Agricultural Systems, Elsevier, vol. 149(C), pages 165-174.
    5. Nelson, R. A. & Holzworth, D. P. & Hammer, G. L. & Hayman, P. T., 2002. "Infusing the use of seasonal climate forecasting into crop management practice in North East Australia using discussion support software," Agricultural Systems, Elsevier, vol. 74(3), pages 393-414, December.
    6. Carberry, P. S. & Hochman, Z. & McCown, R. L. & Dalgliesh, N. P. & Foale, M. A. & Poulton, P. L. & Hargreaves, J. N. G. & Hargreaves, D. M. G. & Cawthray, S. & Hillcoat, N. & Robertson, M. J., 2002. "The FARMSCAPE approach to decision support: farmers', advisers', researchers' monitoring, simulation, communication and performance evaluation," Agricultural Systems, Elsevier, vol. 74(1), pages 141-177, October.
    7. Jakku, E. & Thorburn, P.J., 2010. "A conceptual framework for guiding the participatory development of agricultural decision support systems," Agricultural Systems, Elsevier, vol. 103(9), pages 675-682, November.
    8. Tedeschi, Luis Orlindo, 2006. "Assessment of the adequacy of mathematical models," Agricultural Systems, Elsevier, vol. 89(2-3), pages 225-247, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dick, Jan & Turkelboom, Francis & Woods, Helen & Iniesta-Arandia, Irene & Primmer, Eeva & Saarela, Sanna-Riikka & Bezák, Peter & Mederly, Peter & Leone, Michael & Verheyden, Wim & Kelemen, Eszter & H, 2018. "Stakeholders’ perspectives on the operationalisation of the ecosystem service concept: Results from 27 case studies," Ecosystem Services, Elsevier, vol. 29(PC), pages 552-565.
    2. Vayssières, Jonathan & Vigne, Mathieu & Alary, Véronique & Lecomte, Philippe, 2011. "Integrated participatory modelling of actual farms to support policy making on sustainable intensification," Agricultural Systems, Elsevier, vol. 104(2), pages 146-161, February.
    3. Le Gal, P.-Y. & Dugué, P. & Faure, G. & Novak, S., 2011. "How does research address the design of innovative agricultural production systems at the farm level? A review," Agricultural Systems, Elsevier, vol. 104(9), pages 714-728.
    4. Ditzler, Lenora & Klerkx, Laurens & Chan-Dentoni, Jacqueline & Posthumus, Helena & Krupnik, Timothy J. & Ridaura, Santiago López & Andersson, Jens A. & Baudron, Frédéric & Groot, Jeroen C.J., 2018. "Affordances of agricultural systems analysis tools: A review and framework to enhance tool design and implementation," Agricultural Systems, Elsevier, vol. 164(C), pages 20-30.
    5. Kragt, Marit Ellen & Llewellyn, Rick S., 2013. "Using choice experiments to improve the design of weed decision support tools," Working Papers 147031, University of Western Australia, School of Agricultural and Resource Economics.
    6. Hochman, Z. & Carberry, P.S., 2011. "Emerging consensus on desirable characteristics of tools to support farmers' management of climate risk in Australia," Agricultural Systems, Elsevier, vol. 104(6), pages 441-450, July.
    7. Jakku, E. & Thorburn, P.J., 2010. "A conceptual framework for guiding the participatory development of agricultural decision support systems," Agricultural Systems, Elsevier, vol. 103(9), pages 675-682, November.
    8. Meul, Marijke & Van Middelaar, Corina E. & de Boer, Imke J.M. & Van Passel, Steven & Fremaut, Dirk & Haesaert, Geert, 2014. "Potential of life cycle assessment to support environmental decision making at commercial dairy farms," Agricultural Systems, Elsevier, vol. 131(C), pages 105-115.
    9. Lundström, Christina & Lindblom, Jessica, 2018. "Considering farmers' situated knowledge of using agricultural decision support systems (AgriDSS) to Foster farming practices: The case of CropSAT," Agricultural Systems, Elsevier, vol. 159(C), pages 9-20.
    10. Gunasekhar Nachimuthu & Neil V. Halpin & Michael J. Bell, 2017. "Impact of Practice Change on Runoff Water Quality and Vegetable Yield—An On-Farm Case Study," Agriculture, MDPI, Open Access Journal, vol. 7(3), pages 1-22, March.
    11. Brett A Bryan & Jianjun Huai & Jeff Connor & Lei Gao & Darran King & John Kandulu & Gang Zhao, 2015. "What Actually Confers Adaptive Capacity? Insights from Agro-Climatic Vulnerability of Australian Wheat," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-20, February.
    12. Oyakhilomen Oyinbo & Jordan Chamberlin & Miet Maertens, 2020. "Design of Digital Agricultural Extension Tools: Perspectives from Extension Agents in Nigeria," Journal of Agricultural Economics, Wiley Blackwell, vol. 71(3), pages 798-815, September.
    13. Meylan, Louise & Merot, Anne & Gary, Christian & Rapidel, Bruno, 2013. "Combining a typology and a conceptual model of cropping system to explore the diversity of relationships between ecosystem services: The case of erosion control in coffee-based agroforestry systems in," Agricultural Systems, Elsevier, vol. 118(C), pages 52-64.
    14. Emma Jakku & Peter Thorburn, 2009. "A Conceptual Framework for Guiding the Participatory Development of Agricultural Decision Support Systems," Socio-Economics and the Environment in Discussion (SEED) Working Paper Series 2009-12, CSIRO Sustainable Ecosystems.
    15. Soraya Tanure & Carlos Nabinger & João Luiz Becker, 2015. "Bioeconomic Model of Decision Support System for Farm Management: Proposal of a Mathematical Model," Systems Research and Behavioral Science, Wiley Blackwell, vol. 32(6), pages 658-671, November.
    16. Louise Beveridge & Stephen Whitfield & Andy Challinor, 2018. "Crop modelling: towards locally relevant and climate-informed adaptation," Climatic Change, Springer, vol. 147(3), pages 475-489, April.
    17. Amin, M.G. Mostofa & Šimůnek, Jirka & Lægdsmand, Mette, 2014. "Simulation of the redistribution and fate of contaminants from soil-injected animal slurry," Agricultural Water Management, Elsevier, vol. 131(C), pages 17-29.
    18. Jianjun Huai, 2016. "Role of Livelihood Capital in Reducing Climatic Vulnerability: Insights of Australian Wheat from 1990–2010," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-18, March.
    19. Moraine, Marc & Grimaldi, Juliette & Murgue, Clément & Duru, Michel & Therond, Olivier, 2016. "Co-design and assessment of cropping systems for developing crop-livestock integration at the territory level," Agricultural Systems, Elsevier, vol. 147(C), pages 87-97.
    20. Vänninen, Irene & Pereira-Querol, Marco & Engeström, Yrjö, 2015. "Generating transformative agency among horticultural producers: An activity-theoretical approach to transforming Integrated Pest Management," Agricultural Systems, Elsevier, vol. 139(C), pages 38-49.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:167:y:2018:i:c:p:113-124. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nithya Sathishkumar). General contact details of provider: http://www.elsevier.com/locate/agsy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.