IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i4p862-d1123067.html
   My bibliography  Save this article

Hydrogen Peroxide Mitigates Cu Stress in Wheat

Author

Listed:
  • Bushra Ahmed Alhammad

    (Biology Department, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, Al Kharj Box 292, Riyadh 11942, Saudi Arabia)

  • Mahmoud F. Seleiman

    (Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
    Department of Crop Sciences, Faculty of Agriculture, Menoufia University, Shibin El-kom 32514, Egypt)

  • Matthew Tom Harrison

    (Tasmanian Institute of Agriculture, University of Tasmania, Newnham Drive, Launceston 7248, Australia)

Abstract

Abiotic stress imposed by heavy metals (HMs) adversely influences plant growth. In crop plants, such stresses penalize grain yield and ultimately could have enduring connotations for sustainable food security. Although copper (Cu) is an essential micronutrient for crop life, excessive availability of copper impairs plant growth and/or reproductive performance. Anecdotal evidence suggests that hydrogen peroxide (H 2 O 2 ) is produced in plants under either biotic or abiotic stresses to mitigate oxygen-derived cell toxicity, although the influence of H 2 O 2 remains to be definitively quantified. Here, our aim was to investigate the effects of hydrogen peroxide (H 2 O 2 ) on the growth, grain yield, and yield components, as well as copper uptake of stressed wheat grown in sandy soil. We found that applications rates of 150 or 300 mg Cu kg −1 soil significantly reduced net photosynthesis, leaf area, chlorophyll, and grain yield. Foliar application of H 2 O 2 to plants grown under 150 and 300 mg Cu kg −1 soil had improved growth, physiological, and yield traits. For instance, foliar application of H 2 O 2 Cu-stressed plants grown under 300 mg Cu kg −1 soil reduced detrimental effects of Cu toxicity by −12% in terms of grains per spike and −7% for 1000-grain weight in comparison to the control treatment. Foliar application of H 2 O 2 on wheat grown under copper stress reduced accumulation of other heavy metals such as cadmium. We suggest that the potential for foliar application of H 2 O 2 in mitigating heavy metal stress in crop plants has large global potential; however, further work is required to elucidate the environmental conditions and application rates required to attain optimal benefit.

Suggested Citation

  • Bushra Ahmed Alhammad & Mahmoud F. Seleiman & Matthew Tom Harrison, 2023. "Hydrogen Peroxide Mitigates Cu Stress in Wheat," Agriculture, MDPI, vol. 13(4), pages 1-15, April.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:4:p:862-:d:1123067
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/4/862/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/4/862/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ara, Iffat & Turner, Lydia & Harrison, Matthew Tom & Monjardino, Marta & deVoil, Peter & Rodriguez, Daniel, 2021. "Application, adoption and opportunities for improving decision support systems in irrigated agriculture: A review," Agricultural Water Management, Elsevier, vol. 257(C).
    2. Sahar Shahpari & Janelle Allison & Matthew Tom Harrison & Roger Stanley, 2021. "An Integrated Economic, Environmental and Social Approach to Agricultural Land-Use Planning," Land, MDPI, vol. 10(4), pages 1-18, April.
    3. Ding, Zheli & Ali, Esmat F. & Elmahdy, Ahmed M. & Ragab, Khaled E. & Seleiman, Mahmoud F. & Kheir, Ahmed M.S., 2021. "Modeling the combined impacts of deficit irrigation, rising temperature and compost application on wheat yield and water productivity," Agricultural Water Management, Elsevier, vol. 244(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monjardino, Marta & Harrison, Matthew T. & DeVoil, Peter & Rodriguez, Daniel & Sadras, Victor O., 2022. "Agronomic and on-farm infrastructure adaptations to manage economic risk in Australian irrigated broadacre systems: A case study," Agricultural Water Management, Elsevier, vol. 269(C).
    2. Asmamaw, Desale Kidane & Janssens, Pieter & Dessie, Mekete & Tilahun, Seifu A. & Adgo, Enyew & Nyssen, Jan & Walraevens, Kristine & Assaye, Habtamu & Yenehun, Alemu & Nigate, Fenta & Cornelis, Wim M., 2023. "Effect of deficit irrigation and soil fertility management on wheat production and water productivity in the Upper Blue Nile Basin, Ethiopia," Agricultural Water Management, Elsevier, vol. 277(C).
    3. Guilherme Jesus & Martim L. Aguiar & Pedro D. Gaspar, 2022. "Computational Tool to Support the Decision in the Selection of Alternative and/or Sustainable Refrigerants," Energies, MDPI, vol. 15(22), pages 1-20, November.
    4. Baoyu Liu & Huiling Liang & Chao Wu & Xiyang Huang & Xiangying Wen & Manlian Wang & Hui Tang, 2022. "Physiological and Transcriptomic Responses of Illicium difengpi to Drought Stress," Sustainability, MDPI, vol. 14(12), pages 1-24, June.
    5. Michael Gbenga Ogungbuyi & Juan P. Guerschman & Andrew M. Fischer & Richard Azu Crabbe & Caroline Mohammed & Peter Scarth & Phil Tickle & Jason Whitehead & Matthew Tom Harrison, 2023. "Enabling Regenerative Agriculture Using Remote Sensing and Machine Learning," Land, MDPI, vol. 12(6), pages 1-25, May.
    6. Okura, Fumi & Budiasa, I Wayan & Kato, Tasuku, 2022. "Exploring a Balinese irrigation water management system using agent-based modeling and game theory," Agricultural Water Management, Elsevier, vol. 274(C).
    7. Zhang, Junxiao & Wang, Qianqing & Xia, Guimin & Wu, Qi & Chi, Daocai, 2021. "Continuous regulated deficit irrigation enhances peanut water use efficiency and drought resistance," Agricultural Water Management, Elsevier, vol. 255(C).
    8. Kamran, Muhammad & Yan, Zhengang & Chang, Shenghua & Ning, Jiao & Lou, Shanning & Ahmad, Irshad & Ghani, Muhammad Usman & Arif, Muhammad & El Sabagh, Ayman & Hou, Fujiang, 2023. "Interactive effects of reduced irrigation and nitrogen fertilization on resource use efficiency, forage nutritive quality, yield, and economic benefits of spring wheat in the arid region of Northwest ," Agricultural Water Management, Elsevier, vol. 275(C).
    9. Hadeel E. Khairan & Salah L. Zubaidi & Mustafa Al-Mukhtar & Anmar Dulaimi & Hussein Al-Bugharbee & Furat A. Al-Faraj & Hussein Mohammed Ridha, 2023. "Assessing the Potential of Hybrid-Based Metaheuristic Algorithms Integrated with ANNs for Accurate Reference Evapotranspiration Forecasting," Sustainability, MDPI, vol. 15(19), pages 1-19, September.
    10. Ahmed M. S. Kheir & Hiba M. Alkharabsheh & Mahmoud F. Seleiman & Adel M. Al-Saif & Khalil A. Ammar & Ahmed Attia & Medhat G. Zoghdan & Mahmoud M. A. Shabana & Hesham Aboelsoud & Calogero Schillaci, 2021. "Calibration and Validation of AQUACROP and APSIM Models to Optimize Wheat Yield and Water Saving in Arid Regions," Land, MDPI, vol. 10(12), pages 1-16, December.
    11. Aster Tesfaye Hordofa & Olkeba Tolessa Leta & Tena Alamirew & Abebe Demissie Chukalla, 2022. "Response of Winter Wheat Production to Climate Change in Ziway Lake Basin," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    12. Alina Petronela Alexoaei & Valentin Cojanu & Cristiana-Ioana Coman, 2021. "On Sustainable Consumption: The Implications of Trade in Virtual Water for the EU’s Food Security," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    13. Kheir, Ahmed M.S. & Alrajhi, Abdullah A. & Ghoneim, Adel M. & Ali, Esmat F. & Magrashi, Ali & Zoghdan, Medhat G. & Abdelkhalik, Sedhom A.M. & Fahmy, Ahmed E. & Elnashar, Abdelrazek, 2021. "Modeling deficit irrigation-based evapotranspiration optimizes wheat yield and water productivity in arid regions," Agricultural Water Management, Elsevier, vol. 256(C).
    14. Atkočiūnienė Vilma & Papšienė Palmira, 2023. "Opportunities for Digitisation of Agricultural and Rural Development Solutions," Management Theory and Studies for Rural Business and Infrastructure Development, Sciendo, vol. 45(1), pages 1-8, March.
    15. Yingnan Wei & Han Ru & Xiaolan Leng & Zhijian He & Olusola O. Ayantobo & Tehseen Javed & Ning Yao, 2022. "Better Performance of the Modified CERES-Wheat Model in Simulating Evapotranspiration and Wheat Growth under Water Stress Conditions," Agriculture, MDPI, vol. 12(11), pages 1-15, November.
    16. Tianran Ding & Bernhard Steubing & Wouter Achten, 2022. "Coupling optimization with territorial LCA to support agricultural land-use planning," ULB Institutional Repository 2013/352783, ULB -- Universite Libre de Bruxelles.
    17. Ishaque, Wajid & Osman, Raheel & Hafiza, Barira Shoukat & Malghani, Saadatullah & Zhao, Ben & Xu, Ming & Ata-Ul-Karim, Syed Tahir, 2023. "Quantifying the impacts of climate change on wheat phenology, yield, and evapotranspiration under irrigated and rainfed conditions," Agricultural Water Management, Elsevier, vol. 275(C).
    18. Kotchakarn Nantasaksiri & Patcharawat Charoen-amornkitt & Takashi Machimura & Kiichiro Hayashi, 2021. "Multi-Disciplinary Assessment of Napier Grass Plantation on Local Energetic, Environmental and Socioeconomic Industries: A Watershed-Scale Study in Southern Thailand," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
    19. Arnis Dzalbs & Madara Bimbere & Jelena Pubule & Dagnija Blumberga, 2023. "Environmental Impact Decision Support Tools for Horticulture Farming: Evaluation of GHG Calculators," Agriculture, MDPI, vol. 13(12), pages 1-18, November.
    20. Vasileios P. Georgopoulos & Dimitris C. Gkikas & John A. Theodorou, 2023. "Factors Influencing the Adoption of Artificial Intelligence Technologies in Agriculture, Livestock Farming and Aquaculture: A Systematic Literature Review Using PRISMA 2020," Sustainability, MDPI, vol. 15(23), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:4:p:862-:d:1123067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.