IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v152y2017icp67-79.html
   My bibliography  Save this article

The MiLA tool: Modeling greenhouse gas emissions and cumulative energy demand of energy crop cultivation in rotation

Author

Listed:
  • Peter, Christiane
  • Specka, Xenia
  • Aurbacher, Joachim
  • Kornatz, Peter
  • Herrmann, Christiane
  • Heiermann, Monika
  • Müller, Janine
  • Nendel, Claas

Abstract

Crop rotations are part of current agricultural practice, since they and their effects can contribute to a sustainable agricultural cropping system. However, in current Life Cycle Assessment (LCA) studies, crop rotation effects are insufficiently considered, since these effects are difficult to measure. LCA studies from crop production typically take only one vegetation period into account. As a result, the consideration of how the assessed crop is influenced by the previous crop (crop rotation effects) including: (1) nutrient carryover, (2) reduction in operational requirements and (3) different intensity and timing of farming activities, is outside of the system boundary. However, ignoring these effects may lead to incorrect interpretation of LCA results and consequently to poor agricultural management as well as poor policy decisions. A new LCA tool called the “Model for integrative Life Cycle Assessment in Agriculture (MiLA)” is presented in this work. MiLA has been developed to assess GHG emissions and cumulative energy demands (CED) of cropping systems by taking the characteristics of crop cultivation in rotation into account. This tool enables the user to analyze cropping systems at farm level in order to identify GHG mitigation options and energy-efficient cropping systems. The tool was applied to a case study, including two crop rotations in two different regions in Germany with the goal of demonstrating the effectiveness of this tool on LCA results. Results show that including crop rotation effects can influence the GHG emission result of the individual crop by −34% up to +99% and the CED by −16 up to +89%. Expanding the system boundary by taking the whole crop rotation into account as well as providing the results based on different functional units improves LCA of energy crop production and helps those making the assessment to draw a more realistic picture of the interactions between crops while increasing the reliability of the LCA results.

Suggested Citation

  • Peter, Christiane & Specka, Xenia & Aurbacher, Joachim & Kornatz, Peter & Herrmann, Christiane & Heiermann, Monika & Müller, Janine & Nendel, Claas, 2017. "The MiLA tool: Modeling greenhouse gas emissions and cumulative energy demand of energy crop cultivation in rotation," Agricultural Systems, Elsevier, vol. 152(C), pages 67-79.
  • Handle: RePEc:eee:agisys:v:152:y:2017:i:c:p:67-79
    DOI: 10.1016/j.agsy.2016.12.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X16305662
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2016.12.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brankatschk, Gerhard & Finkbeiner, Matthias, 2015. "Modeling crop rotation in agricultural LCAs — Challenges and potential solutions," Agricultural Systems, Elsevier, vol. 138(C), pages 66-76.
    2. Cherubini, Francesco, 2010. "GHG balances of bioenergy systems – Overview of key steps in the production chain and methodological concerns," Renewable Energy, Elsevier, vol. 35(7), pages 1565-1573.
    3. Rehl, T. & Lansche, J. & Müller, J., 2012. "Life cycle assessment of energy generation from biogas—Attributional vs. consequential approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3766-3775.
    4. Koçar, Günnur & Civaş, Nilgün, 2013. "An overview of biofuels from energy crops: Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 900-916.
    5. Alluvione, Francesco & Moretti, Barbara & Sacco, Dario & Grignani, Carlo, 2011. "EUE (energy use efficiency) of cropping systems for a sustainable agriculture," Energy, Elsevier, vol. 36(7), pages 4468-4481.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yue, Wencong & Su, Meirong & Cai, Yanpeng & Rong, Qiangqiang & Tan, Zhenkun, 2021. "Reactive nitrogen loss from livestock-based food and biofuel production systems considering climate change and dietary transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Jinglun Peng & Moonju Kim & Kyungil Sung, 2020. "Yield Prediction Modeling for Sorghum–Sudangrass Hybrid Based on Climatic, Soil, and Cultivar Data in the Republic of Korea," Agriculture, MDPI, vol. 10(4), pages 1-11, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    2. Mohammadi, Ali & Rafiee, Shahin & Jafari, Ali & Keyhani, Alireza & Mousavi-Avval, Seyed Hashem & Nonhebel, Sanderine, 2014. "Energy use efficiency and greenhouse gas emissions of farming systems in north Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 724-733.
    3. Peter, Christiane & Helming, Katharina & Nendel, Claas, 2017. "Do greenhouse gas emission calculations from energy crop cultivation reflect actual agricultural management practices? – A review of carbon footprint calculators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 461-476.
    4. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    5. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    6. Navarro-Miró, D. & Iocola, I. & Persiani, A. & Blanco-Moreno, J.M. & Kristensen, H. Lakkenborg & Hefner, M. & Tamm, K. & Bender, I. & Védie, H. & Willekens, K. & Diacono, M. & Montemurro, F. & Sans, F, 2019. "Energy flows in European organic vegetable systems: Effects of the introduction and management of agroecological service crops," Energy, Elsevier, vol. 188(C).
    7. Grzegorz Ślusarz & Barbara Gołębiewska & Marek Cierpiał-Wolan & Jarosław Gołębiewski & Dariusz Twaróg & Sebastian Wójcik, 2021. "Regional Diversification of Potential, Production and Efficiency of Use of Biogas and Biomass in Poland," Energies, MDPI, vol. 14(3), pages 1-20, January.
    8. Behroozeh, Samira & Hayati, Dariush & Karami, Ezatollah, 2022. "Determining and validating criteria to measure energy consumption sustainability in agricultural greenhouses," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    9. Martin-Gorriz, B. & Soto-García, M. & Martínez-Alvarez, V., 2014. "Energy and greenhouse-gas emissions in irrigated agriculture of SE (southeast) Spain. Effects of alternative water supply scenarios," Energy, Elsevier, vol. 77(C), pages 478-488.
    10. Jankowski, Krzysztof Józef & Dubis, Bogdan & Sokólski, Mateusz Mikołaj & Załuski, Dariusz & Bórawski, Piotr & Szempliński, Władysław, 2019. "Biomass yield and energy balance of Virginia fanpetals in different production technologies in north-eastern Poland," Energy, Elsevier, vol. 185(C), pages 612-623.
    11. Navas-Anguita, Zaira & García-Gusano, Diego & Iribarren, Diego, 2019. "A review of techno-economic data for road transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 11-26.
    12. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    13. Tsolas, Spyridon D. & Karim, M. Nazmul & Hasan, M.M. Faruque, 2018. "Optimization of water-energy nexus: A network representation-based graphical approach," Applied Energy, Elsevier, vol. 224(C), pages 230-250.
    14. Barut, Zeliha Bereket & Ertekin, Can & Karaagac, Hasan Ali, 2011. "Tillage effects on energy use for corn silage in Mediterranean Coastal of Turkey," Energy, Elsevier, vol. 36(9), pages 5466-5475.
    15. Mohammadrezaei, Rashed & Zareei, Samira & Behroozi- Khazaei, Nasser, 2018. "Optimum mixing rate in biogas reactors: Energy balance calculations and computational fluid dynamics simulation," Energy, Elsevier, vol. 159(C), pages 54-60.
    16. Bacenetti, Jacopo & Sala, Cesare & Fusi, Alessandra & Fiala, Marco, 2016. "Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable," Applied Energy, Elsevier, vol. 179(C), pages 669-686.
    17. Kimming, M. & Sundberg, C. & Nordberg, Å. & Hansson, P.-A., 2015. "Vertical integration of local fuel producers into rural district heating systems – Climate impact and production costs," Energy Policy, Elsevier, vol. 78(C), pages 51-61.
    18. Monia El Akkari & Nosra Ben Fradj & Benoît Gabrielle & Sylvestre Njakou Djomo, 2023. "Spatially-explicit environmental assessment of bioethanol from miscanthus and switchgrass in France [Évaluation environnementale spatialement explicite du bioéthanol produit à partir de miscanthus ," Post-Print hal-04369771, HAL.
    19. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    20. Sokka, L. & Sinkko, T. & Holma, A. & Manninen, K. & Pasanen, K. & Rantala, M. & Leskinen, P., 2016. "Environmental impacts of the national renewable energy targets – A case study from Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1599-1610.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:152:y:2017:i:c:p:67-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.