IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2022-05-32.html
   My bibliography  Save this article

A Sustainable Way to Generate Energy through Biomass Flash Pyrolysis in South Asia: A Green Energy Technology

Author

Listed:
  • Rabia Noor Enam

    (Department of Computer Engineering, Sir Syed University of Engineering and Technology, Pakistan,)

  • Muhammad Tahir

    (2Department of Software Engineering, Sir Syed University of Engineering and Technology, Pakistan)

  • Huma Hasan Rizvi

    (Department of Computer Engineering, Sir Syed University of Engineering and Technology, Pakistan,)

  • Asim Rafique

    (Department of Business Administration, Sindh Institute of Management and Technology, Pakistan,)

  • Syed Muhammad Nabeel Mustafa

    (Department of Computer Science and Information Technology, NED University of Engineering and Technology, Pakistan.)

Abstract

Asian Countries mostly lying in Subcontinent region are the main producers of Sugar canes. On the other hand, these are the developing countries which mostly face potential energy crisis which ultimately gives rise to sustainable electricity demand challenges. This challenge can be mitigated through the conventional way of bagasse-based cogeneration of power. Therefore, sugar industries can contribute in fulfilling at least their own requirement of plant electricity. But this method in turn produces carbon dioxide (CO2) to the environment which is a major source of Green House Gas (GHG) emissions globally. So, it is the most significant contributor to the global warming, which plays diverse impact on social, environmental, and economic costs. So far, the increasing concentrations of GHGs in the atmosphere are a notable issue. Biochar is one of the products of flash pyrolysis which reduces the GHG emissions and enhancement of soil fertility. This paper proposes flash pyrolysis as a sustainable way of meeting electricity demand with additional benefits over conventional way of burning bagasse in cogeneration, giving the environmental and economic benefits of pyrolysis. Bagasse gasification by flash pyrolysis in the sugar mills could be an alternative option for electricity generation with CO2 negative impact.

Suggested Citation

  • Rabia Noor Enam & Muhammad Tahir & Huma Hasan Rizvi & Asim Rafique & Syed Muhammad Nabeel Mustafa, 2022. "A Sustainable Way to Generate Energy through Biomass Flash Pyrolysis in South Asia: A Green Energy Technology," International Journal of Energy Economics and Policy, Econjournals, vol. 12(5), pages 274-279, September.
  • Handle: RePEc:eco:journ2:2022-05-32
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/13335/6925
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/13335
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bogdan Saletnik & Grzegorz Zagula & Marcin Bajcar & Maria Czernicka & Czeslaw Puchalski, 2018. "Biochar and Biomass Ash as a Soil Ameliorant: The Effect on Selected Soil Properties and Yield of Giant Miscanthus (Miscanthus x giganteus)," Energies, MDPI, vol. 11(10), pages 1-24, September.
    2. Yufang Shen & Lixia Zhu & Hongyan Cheng & Shanchao Yue & Shiqing Li, 2017. "Effects of Biochar Application on CO 2 Emissions from a Cultivated Soil under Semiarid Climate Conditions in Northwest China," Sustainability, MDPI, vol. 9(8), pages 1-13, August.
    3. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E. & Shahabuddin, M. & Palash, S.M. & Hazrat, M.A., 2013. "Effect of biodiesel from various feedstocks on combustion characteristics, engine durability and materials compatibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 441-455.
    4. Mohammad I. Jahirul & Mohammad G. Rasul & Ashfaque Ahmed Chowdhury & Nanjappa Ashwath, 2012. "Biofuels Production through Biomass Pyrolysis —A Technological Review," Energies, MDPI, vol. 5(12), pages 1-50, November.
    5. Lee, Taewoo & Jung, Sungyup & Kim, Ki-Hyun & Kwon, Eilhann E., 2021. "Catalytic pyrolysis of pine bark over Ni/SiO2 in a CO2 atmosphere," Energy, Elsevier, vol. 220(C).
    6. Horas Djulius, 2017. "Energy Use, Trade Openness, and Exchange Rate Impact on Foreign Direct Investment in Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 7(5), pages 166-170.
    7. Rahimi, Mohammad Javad & Ghorbani, Bahram & Amidpour, Majid & Hamedi, Mohammad Hossein, 2021. "Configuration optimization of a multi-generation plant based on biomass gasification," Energy, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simeng Li, 2024. "Reviewing Air Pollutants Generated during the Pyrolysis of Solid Waste for Biofuel and Biochar Production: Toward Cleaner Production Practices," Sustainability, MDPI, vol. 16(3), pages 1-30, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    2. Aboagye, D. & Banadda, N. & Kiggundu, N. & Kabenge, I., 2017. "Assessment of orange peel waste availability in ghana and potential bio-oil yield using fast pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 814-821.
    3. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    4. Lv, Xuefei & Lv, Ying & Zhu, Yiping, 2023. "Multi-variable study and MOPSO-based multi-objective optimization of a novel cogeneration plant using biomass fuel and geothermal energy: A complementary hybrid design," Energy, Elsevier, vol. 270(C).
    5. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    6. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    7. Taghizadeh-Alisaraei, Ahmad & Assar, Hossein Alizadeh & Ghobadian, Barat & Motevali, Ali, 2017. "Potential of biofuel production from pistachio waste in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 510-522.
    8. Kumar N, Sasi & Grekov, Denys & Pré, Pascaline & Alappat, Babu J., 2020. "Microwave mode of heating in the preparation of porous carbon materials for adsorption and energy storage applications – An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    9. Fabián Vargas & Armando Pérez & Rene Delgado & Emilio Hernández & José Alejandro Suástegui, 2019. "Performance Analysis of a Compression Ignition Engine Using Mixture Biodiesel Palm and Diesel," Sustainability, MDPI, vol. 11(18), pages 1-26, September.
    10. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    11. Jouhara, H. & Nannou, T.K. & Anguilano, L. & Ghazal, H. & Spencer, N., 2017. "Heat pipe based municipal waste treatment unit for home energy recovery," Energy, Elsevier, vol. 139(C), pages 1210-1230.
    12. Ahmad Numery Ashfaqul Haque & Md. Kamal Uddin & Muhammad Firdaus Sulaiman & Adibah Mohd Amin & Mahmud Hossain & Syaharudin Zaibon & Mehnaz Mosharrof, 2021. "Assessing the Increase in Soil Moisture Storage Capacity and Nutrient Enhancement of Different Organic Amendments in Paddy Soil," Agriculture, MDPI, vol. 11(1), pages 1-15, January.
    13. Mehnaz Mosharrof & Md. Kamal Uddin & Muhammad Firdaus Sulaiman & Shamim Mia & Shordar M. Shamsuzzaman & Ahmad Numery Ashfaqul Haque, 2021. "Combined Application of Rice Husk Biochar and Lime Increases Phosphorus Availability and Maize Yield in an Acidic Soil," Agriculture, MDPI, vol. 11(8), pages 1-21, August.
    14. Kamel, Salah & El-Sattar, Hoda Abd & Vera, David & Jurado, Francisco, 2018. "Bioenergy potential from agriculture residues for energy generation in Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 28-37.
    15. Kawale, Harshal D. & Kishore, Nanda, 2019. "Production of hydrocarbons from a green algae (Oscillatoria) with exploration of its fuel characteristics over different reaction atmospheres," Energy, Elsevier, vol. 178(C), pages 344-355.
    16. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    17. Workson Siwale & Stefan Frodeson & Michael Finell & Mehrdad Arshadi & Carina Jonsson & Gunnar Henriksson & Jonas Berghel, 2022. "Understanding Off-Gassing of Biofuel Wood Pellets Using Pellets Produced from Pure Microcrystalline Cellulose with Different Additive Oils," Energies, MDPI, vol. 15(6), pages 1-12, March.
    18. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    19. Das, Amar Kumar & Sahu, Santosh Kumar & Panda, Achyut Kumar, 2022. "Current status and prospects of alternate liquid transportation fuels in compression ignition engines: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    20. Sánchez, M. & Clifford, B. & Nixon, J.D., 2018. "Modelling and evaluating a solar pyrolysis system," Renewable Energy, Elsevier, vol. 116(PA), pages 630-638.

    More about this item

    Keywords

    Bagasse; renewable energy; biomass; green energy;
    All these keywords.

    JEL classification:

    • Q2 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation
    • Q3 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2022-05-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.