IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2022-01-42.html
   My bibliography  Save this article

Techno-Economic Analysis of Municipal Solid Waste Gasification for Electricity Generation

Author

Listed:
  • Ali Eliasu

    (Department of Energy and Petroleum Engineering, University of Energy and Natural Resources, Sunyani, Ghana,)

  • Nana Sarfo Agyemang Derkyi

    (Department of Energy and Petroleum Engineering, University of Energy and Natural Resources, Sunyani, Ghana,)

  • Samuel Gyamfi

    (Department of Energy and Petroleum Engineering, University of Energy and Natural Resources, Sunyani, Ghana,)

Abstract

Due to an overburdened national grid, chronic energy challenges, and the growing municipal solid waste menace, a unique opportunity to deploy waste-to-energy technology in Ghana is apparent. A techno-economic analysis was performed for meeting the primary electrical load of selected blocks at the University of Energy and Natural Resources through Municipal Solid Waste gasification. Three scenarios were simulated and assessed based on their Net Present Costs (NPC) and Levelised Cost of Energy (LCOE): a gasifier-standalone system, a grid-tied gasifier system and a grid-alone system. The grid-tied gasifier system was found to meet the 230.1 kWh/day electrical load at the least NPC ($2, 049790.00) and COE ($0.09426/kWh). The sensitivity analysis showed that the load factor, sell-back price of electricity and cost/ton of MSW had the most impact on the NPC of the gasification system. MSW gasification is, therefore, an economically viable alternative if grid-integrated. Finally, the study showed that Feed-in Tariffs, plant siting and demand response strategies are crucial to ensuring the cost-effectiveness of gasification systems.

Suggested Citation

  • Ali Eliasu & Nana Sarfo Agyemang Derkyi & Samuel Gyamfi, 2022. "Techno-Economic Analysis of Municipal Solid Waste Gasification for Electricity Generation," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 342-348.
  • Handle: RePEc:eco:journ2:2022-01-42
    as

    Download full text from publisher

    File URL: http://www.econjournals.com/index.php/ijeep/article/download/11894/6235/29560
    Download Restriction: no

    File URL: http://www.econjournals.com/index.php/ijeep/article/view/11894/6235
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bhoi, Prakashbhai R. & Huhnke, Raymond L. & Kumar, Ajay & Indrawan, Natarianto & Thapa, Sunil, 2018. "Co-gasification of municipal solid waste and biomass in a commercial scale downdraft gasifier," Energy, Elsevier, vol. 163(C), pages 513-518.
    2. Natarianto Indrawan & Betty Simkins & Ajay Kumar & Raymond L. Huhnke, 2020. "Economics of Distributed Power Generation via Gasification of Biomass and Municipal Solid Waste," Energies, MDPI, vol. 13(14), pages 1-18, July.
    3. Indrawan, Natarianto & Thapa, Sunil & Bhoi, Prakashbhai R. & Huhnke, Raymond L. & Kumar, Ajay, 2018. "Electricity power generation from co-gasification of municipal solid wastes and biomass: Generation and emission performance," Energy, Elsevier, vol. 162(C), pages 764-775.
    4. Chambon, Clementine L. & Karia, Tanuj & Sandwell, Philip & Hallett, Jason P., 2020. "Techno-economic assessment of biomass gasification-based mini-grids for productive energy applications: The case of rural India," Renewable Energy, Elsevier, vol. 154(C), pages 432-444.
    5. Montuori, Lina & Alcázar-Ortega, Manuel & Álvarez-Bel, Carlos & Domijan, Alex, 2014. "Integration of renewable energy in microgrids coordinated with demand response resources: Economic evaluation of a biomass gasification plant by Homer Simulator," Applied Energy, Elsevier, vol. 132(C), pages 15-22.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacek Roman & Robert Wróblewski & Beata Klojzy-Karczmarczyk & Bartosz Ceran, 2023. "Energetic, Economic and Environmental (3E) Analysis of a RES-Waste Gasification Plant with Syngas Storage Cooperation," Energies, MDPI, vol. 16(4), pages 1-29, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ribó-Pérez, David & Herraiz-Cañete, Ángela & Alfonso-Solar, David & Vargas-Salgado, Carlos & Gómez-Navarro, Tomás, 2021. "Modelling biomass gasifiers in hybrid renewable energy microgrids; a complete procedure for enabling gasifiers simulation in HOMER," Renewable Energy, Elsevier, vol. 174(C), pages 501-512.
    2. Pan, Peiyuan & Peng, Weike & Li, Jiarui & Chen, Heng & Xu, Gang & Liu, Tong, 2022. "Design and evaluation of a conceptual waste-to-energy approach integrating plasma waste gasification with coal-fired power generation," Energy, Elsevier, vol. 238(PC).
    3. Natarianto Indrawan & Betty Simkins & Ajay Kumar & Raymond L. Huhnke, 2020. "Economics of Distributed Power Generation via Gasification of Biomass and Municipal Solid Waste," Energies, MDPI, vol. 13(14), pages 1-18, July.
    4. Bhoi, P.R. & Ouedraogo, A.S. & Soloiu, V. & Quirino, R., 2020. "Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    5. Akrami, Ehsan & Ameri, Mohammad & Rocco, Matteo V., 2021. "Conceptual design, exergoeconomic analysis and multi-objective optimization for a novel integration of biomass-fueled power plant with MCFC-cryogenic CO2 separation unit for low-carbon power productio," Energy, Elsevier, vol. 227(C).
    6. Raj, Reetu & Tirkey, Jeewan Vachan & Jena, Priyaranjan & Prajapati, Lawalesh Kumar, 2024. "Comparative analysis of Gasifier-CI engine performance and emissions characteristics using diesel with producer gas derived from coal– briquette-coconut shell-mahua feedstock and its blends," Energy, Elsevier, vol. 293(C).
    7. Mariyam, Sabah & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish. R & McKay, Gordon, 2022. "A critical review on co-gasification and co-pyrolysis for gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    8. Fazil, A. & Kumar, Sandeep & Mahajani, Sanjay M., 2023. "Gasification and Co-gasification of paper-rich, high-ash refuse-derived fuel in downdraft gasifier," Energy, Elsevier, vol. 263(PA).
    9. Angelika Sita Ouedraogo & Robert Scott Frazier & Ajay Kumar, 2021. "Comparative Life Cycle Assessment of Gasification and Landfilling for Disposal of Municipal Solid Wastes," Energies, MDPI, vol. 14(21), pages 1-15, October.
    10. Upadhyay, Darshit S. & Sakhiya, Anil Kumar & Panchal, Krunal & Patel, Amar H. & Patel, Rajesh N., 2019. "Effect of equivalence ratio on the performance of the downdraft gasifier – An experimental and modelling approach," Energy, Elsevier, vol. 168(C), pages 833-846.
    11. Yiqi Dong & Zuoji Dong, 2023. "Bibliometric Analysis of Game Theory on Energy and Natural Resource," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    12. Terfa, H. & Baghli, L. & Bhandari, R., 2022. "Impact of renewable energy micro-power plants on power grids over Africa," Energy, Elsevier, vol. 238(PA).
    13. Benim, Ali Cemal & Pfeiffelmann, Björn & Ocłoń, Paweł & Taler, Jan, 2019. "Computational investigation of a lifted hydrogen flame with LES and FGM," Energy, Elsevier, vol. 173(C), pages 1172-1181.
    14. Bustos, Cristian & Watts, David, 2017. "Novel methodology for microgrids in isolated communities: Electricity cost-coverage trade-off with 3-stage technology mix, dispatch & configuration optimizations," Applied Energy, Elsevier, vol. 195(C), pages 204-221.
    15. Gabbrielli, Roberto & Barontini, Federica & Frigo, Stefano & Bressan, Luigi, 2022. "Numerical analysis of bio-methane production from biomass-sewage sludge oxy-steam gasification and methanation process," Applied Energy, Elsevier, vol. 307(C).
    16. Montuori, Lina & Alcázar-Ortega, Manuel, 2021. "Demand response strategies for the balancing of natural gas systems: Application to a local network located in The Marches (Italy)," Energy, Elsevier, vol. 225(C).
    17. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    18. Adnan, Muflih A. & Hossain, Mohammad M. & Kibria, Md Golam, 2020. "Biomass upgrading to high-value chemicals via gasification and electrolysis: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1367-1379.
    19. Xu, Qingyang & Sun, Feihu & Cai, Qiran & Liu, Li-Jing & Zhang, Kun & Liang, Qiao-Mei, 2022. "Assessment of the influence of demand-side responses on high-proportion renewable energy system: An evidence of Qinghai, China," Renewable Energy, Elsevier, vol. 190(C), pages 945-958.
    20. Bai, Linquan & Li, Fangxing & Cui, Hantao & Jiang, Tao & Sun, Hongbin & Zhu, Jinxiang, 2016. "Interval optimization based operating strategy for gas-electricity integrated energy systems considering demand response and wind uncertainty," Applied Energy, Elsevier, vol. 167(C), pages 270-279.

    More about this item

    Keywords

    Techno-Economic Analysis; MSW; Gasification; Net Present Value; Levelized Cost of Energy;
    All these keywords.

    JEL classification:

    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2022-01-42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.