IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2014-02-11.html
   My bibliography  Save this article

Quantification and Costing of Domestic Electricity Generation for Armidale, New South Wales, Australia Utilising Micro Wind Turbines

Author

Listed:
  • Yasser Maklad

    (Civil and Environmental Engineering, School of Environmental and Rural Science, University of New England (UNE), Armidale. NSW. 2351. Australia)

Abstract

In this study, a general overview of energy and renewable energy sources available in Australia was introduced, household s electricity situation in Australia was presented, and focus wind energy was conducted. A theoretical methodology for quantification and costing of selected micro wind turbines was introduced. This methodology was applied to Armidale city, New South Wales (NSW), Australia as a case study. The methodology involved utilisation of spread sheet application and HOMER software. Such methodology dealt with hourly household electric load in Armidale and hourly wind speed in Armidale as inputs and provided hourly power outputs from selected micro wind turbine as an output. As well, a sample of payback period calculations for the said selected wind turbines is calculated versus various wind speeds. This methodology can be applied to any other cities or towns. Undoubtedly, the ability of quantifying micro electricity generation resultant from micro wind turbines for a specific city or town and evaluating the share of households electric consumption at that city or town associated with the relevant payback periods opens the gate for further studies of feasibility and visibility of micro wind turbines.

Suggested Citation

  • Yasser Maklad, 2014. "Quantification and Costing of Domestic Electricity Generation for Armidale, New South Wales, Australia Utilising Micro Wind Turbines," International Journal of Energy Economics and Policy, Econjournals, vol. 4(2), pages 208-219.
  • Handle: RePEc:eco:journ2:2014-02-11
    as

    Download full text from publisher

    File URL: http://www.econjournals.com/index.php/ijeep/article/download/736/428
    Download Restriction: no

    File URL: http://www.econjournals.com/index.php/ijeep/article/view/736/428
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Şahin, Ahmet Z. & Aksakal, Ahmet, 1998. "Wind power energy potential at the northeastern region of Saudi Arabia," Renewable Energy, Elsevier, vol. 14(1), pages 435-440.
    2. Yasser Maklad, 2014. "Preliminary Possibility of Utilising Renewable Energy for Domestic Electricity Generation in Rural and Regional Australia," Bulletin of Energy Economics (BEE), The Economics and Social Development Organization (TESDO), vol. 2(2), pages 41-49, June.
    3. Malik, A. & Al-Badi, A.H., 2009. "Economics of Wind turbine as an energy fuel saver – A case study for remote application in oman," Energy, Elsevier, vol. 34(10), pages 1573-1578.
    4. Yasser Maklad, 2014. "A Hybrid RenewableEnergy System (Wind and Solar) Size Optimization and Costing for Residential Buildings in Urban Armidale NSW, Australia," Bulletin of Energy Economics (BEE), The Economics and Social Development Organization (TESDO), vol. 2(3), pages 50-61, September.
    5. Dalton, G.J. & Lockington, D.A. & Baldock, T.E., 2009. "Case study feasibility analysis of renewable energy supply options for small to medium-sized tourist accommodations," Renewable Energy, Elsevier, vol. 34(4), pages 1134-1144.
    6. Kelleher, J. & Ringwood, J.V., 2009. "A computational tool for evaluating the economics of solar and wind microgeneration of electricity," Energy, Elsevier, vol. 34(4), pages 401-409.
    7. Li, Zhe & Boyle, Fergal & Reynolds, Anthony, 2012. "Domestic application of micro wind turbines in Ireland: Investigation of their economic viability," Renewable Energy, Elsevier, vol. 41(C), pages 64-74.
    8. Khan, M.J. & Iqbal, M.T., 2005. "Pre-feasibility study of stand-alone hybrid energy systems for applications in Newfoundland," Renewable Energy, Elsevier, vol. 30(6), pages 835-854.
    9. Sayigh, Ali, 1999. "Renewable energy -- the way forward," Applied Energy, Elsevier, vol. 64(1-4), pages 15-30, September.
    10. Yasser Maklad & Rex Glencross-Grant, 2014. "A Seasonal Analysis of Potential Wind Power for Armidale NSW, Australia," International Journal of Energy Economics and Policy, Econjournals, vol. 4(1), pages 92-107.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ljerka Cerovic & Dario Maradin & Sa a Cegar, 2014. "From the Restructuring of the Power Sector to Diversification of Renewable Energy Sources: Preconditions for Efficient and Sustainable Electricity Market," International Journal of Energy Economics and Policy, Econjournals, vol. 4(4), pages 599-609.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhe & Boyle, Fergal & Reynolds, Anthony, 2012. "Domestic application of micro wind turbines in Ireland: Investigation of their economic viability," Renewable Energy, Elsevier, vol. 41(C), pages 64-74.
    2. Yasser Maklad, 2014. "Sizing and Costing Optimisation of a Typical Wind/PV Hybrid Electricity Generation System for a Typical Residential Building in Urban Armidale NSW, Australia," International Journal of Energy Economics and Policy, Econjournals, vol. 4(2), pages 163-168.
    3. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    4. Li, Zhe & Boyle, Fergal & Reynolds, Anthony, 2011. "Domestic application of solar PV systems in Ireland: The reality of their economic viability," Energy, Elsevier, vol. 36(10), pages 5865-5876.
    5. Li, Zhe & Reynolds, Anthony & Boyle, Fergal, 2014. "Domestic integration of micro-renewable electricity generation in Ireland – The current status and economic reality," Renewable Energy, Elsevier, vol. 64(C), pages 244-254.
    6. Türkay, Belgin Emre & Telli, Ali Yasin, 2011. "Economic analysis of standalone and grid connected hybrid energy systems," Renewable Energy, Elsevier, vol. 36(7), pages 1931-1943.
    7. William E., Lilley & Luke J., Reedman & Liam D., Wagner & Colin F., Alie & Anthony R., Szatow, 2012. "An economic evaluation of the potential for distributed energy in Australia," Energy Policy, Elsevier, vol. 51(C), pages 277-289.
    8. Liu, Gang & Rasul, M.G. & Amanullah, M.T.O. & Khan, M.M.K., 2012. "Techno-economic simulation and optimization of residential grid-connected PV system for the Queensland climate," Renewable Energy, Elsevier, vol. 45(C), pages 146-155.
    9. Fazelpour, Farivar & Soltani, Nima & Rosen, Marc A., 2014. "Feasibility of satisfying electrical energy needs with hybrid systems for a medium-size hotel on Kish Island, Iran," Energy, Elsevier, vol. 73(C), pages 856-865.
    10. Perera, A.T.D. & Attalage, R.A. & Perera, K.K.C.K. & Dassanayake, V.P.C., 2013. "Designing standalone hybrid energy systems minimizing initial investment, life cycle cost and pollutant emission," Energy, Elsevier, vol. 54(C), pages 220-230.
    11. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    12. Keyhani, A. & Ghasemi-Varnamkhasti, M. & Khanali, M. & Abbaszadeh, R., 2010. "An assessment of wind energy potential as a power generation source in the capital of Iran, Tehran," Energy, Elsevier, vol. 35(1), pages 188-201.
    13. Bortolini, Marco & Gamberi, Mauro & Graziani, Alessandro & Manzini, Riccardo & Pilati, Francesco, 2014. "Performance and viability analysis of small wind turbines in the European Union," Renewable Energy, Elsevier, vol. 62(C), pages 629-639.
    14. Amutha, W. Margaret & Rajini, V., 2016. "Cost benefit and technical analysis of rural electrification alternatives in southern India using HOMER," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 236-246.
    15. Maatallah, Taher & Ghodhbane, Nahed & Ben Nasrallah, Sassi, 2016. "Assessment viability for hybrid energy system (PV/wind/diesel) with storage in the northernmost city in Africa, Bizerte, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1639-1652.
    16. Selin Kocaman, Ayse & Abad, Carlos & Troy, Tara J. & Tim Huh, Woonghee & Modi, Vijay, 2016. "A stochastic model for a macroscale hybrid renewable energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 688-703.
    17. Nadia Belmonte & Carlo Luetto & Stefano Staulo & Paola Rizzi & Marcello Baricco, 2017. "Case Studies of Energy Storage with Fuel Cells and Batteries for Stationary and Mobile Applications," Challenges, MDPI, vol. 8(1), pages 1-15, March.
    18. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2014. "Study on offshore wind power potential and wind farm optimization in Hong Kong," Applied Energy, Elsevier, vol. 130(C), pages 519-531.
    19. Velo, R. & Osorio, L. & Fernández, M.D. & Rodríguez, M.R., 2014. "An economic analysis of a stand-alone and grid-connected cattle farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 883-890.
    20. Jaszczur, Marek & Hassan, Qusay & Palej, Patryk & Abdulateef, Jasim, 2020. "Multi-Objective optimisation of a micro-grid hybrid power system for household application," Energy, Elsevier, vol. 202(C).

    More about this item

    Keywords

    Renewable energy in Australia; micro wind turbines; micro electricity generation; Household electricity consumption; Armidale city.;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • C9 - Mathematical and Quantitative Methods - - Design of Experiments

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2014-02-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.