IDEAS home Printed from https://ideas.repec.org/a/ebl/ecbull/eb-01c10007.html
   My bibliography  Save this article

Nonparametric density estimation: A comparative study

Author

Listed:
  • Teruko Takada

    (Department of Economics, University of Illinois)

Abstract

Motivated by finance applications, the objective of this paper is to assess the performance of several important methods for univariate density estimation focusing on the robustness of the methods to heavy tailed target densities. We consider four approaches: a fixed bandwidth kernel estimator, an adaptive bandwidth kernel estimator, the Hermite series (SNP) estimator of Gallant and Nychka, and the logspline estimator of Kooperberg and Stone. We conclude that the logspline and adaptive kernel methods are superior for fitting heavy tailed densities. Evaluation of the convergence rates of the SNP estimator for the family of Student-t densities reveals poor performance, measured by Hellinger error. In contrast, the logspline estimator exhibits good convergence independent of the tail behavior of the target density. These findings are confirmed in a small Monte-Carlo experiment.

Suggested Citation

  • Teruko Takada, 2001. "Nonparametric density estimation: A comparative study," Economics Bulletin, AccessEcon, vol. 3(16), pages 1-10.
  • Handle: RePEc:ebl:ecbull:eb-01c10007
    as

    Download full text from publisher

    File URL: http://www.accessecon.com/pubs/EB/2001/Volume3/EB-01C10007A.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Baillie, Richard T & Bollerslev, Tim, 2002. "The Message in Daily Exchange Rates: A Conditional-Variance Tale," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 60-68, January.
    2. PARK, Byeong & TURLACH, Berwin, 1992. "Practical performance of several data driven bandwidth selectors," LIDAM Discussion Papers CORE 1992005, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Fenton, Victor M & Gallant, A Ronald, 1996. "Erratum [Convergence Rates of SNP Density Estimators]," Econometrica, Econometric Society, vol. 64(6), pages 1493-1493, November.
    4. Fenton, Victor M. & Gallant, A. Ronald, 1996. "Qualitative and asymptotic performance of SNP density estimators," Journal of Econometrics, Elsevier, vol. 74(1), pages 77-118, September.
    5. Coppejans, Mark & Gallant, A. Ronald, 2002. "Cross-validated SNP density estimates," Journal of Econometrics, Elsevier, vol. 110(1), pages 27-65, September.
    6. Gallant, A Ronald & Nychka, Douglas W, 1987. "Semi-nonparametric Maximum Likelihood Estimation," Econometrica, Econometric Society, vol. 55(2), pages 363-390, March.
    7. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    8. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    9. PARK, Byeong U. & TURLACH, Berwin A., 1992. "Practical performance of several data driven bandwidth selectors," LIDAM Reprints CORE 1001, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Engle, Robert F & Gonzalez-Rivera, Gloria, 1991. "Semiparametric ARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(4), pages 345-359, October.
    11. Kooperberg, Charles & Stone, Charles J., 1991. "A study of logspline density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 12(3), pages 327-347, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomas Ruzgas & Mantas Lukauskas & Gedmantas Čepkauskas, 2021. "Nonparametric Multivariate Density Estimation: Case Study of Cauchy Mixture Model," Mathematics, MDPI, vol. 9(21), pages 1-22, October.
    2. Mittelhammer, Ron C. & Judge, George, 2011. "A family of empirical likelihood functions and estimators for the binary response model," Journal of Econometrics, Elsevier, vol. 164(2), pages 207-217, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Yang & Li, Steven & Wen, Fenghua, 2019. "Time-varying volatility spillover between Chinese fuel oil and stock index futures markets based on a DCC-GARCH model with a semi-nonparametric approach," Energy Economics, Elsevier, vol. 83(C), pages 119-143.
    2. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038, Elsevier.
    3. Andersen, Torben G. & Lund, Jesper, 1997. "Estimating continuous-time stochastic volatility models of the short-term interest rate," Journal of Econometrics, Elsevier, vol. 77(2), pages 343-377, April.
    4. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    5. Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. Estadística y Econometría. DS 3664, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Emese Lazar & Carol Alexander, 2006. "Normal mixture GARCH(1,1): applications to exchange rate modelling," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 307-336.
    7. Nijman, T.E. & Palm, F.C., 1991. "Recent Developments in Modeling Volatility in Financial Data," Papers 9168, Tilburg - Center for Economic Research.
    8. Chihwa Kao, 2001. "Geography, Industrial Organization, and Agglomeration Heteroskedasticity Models with Estimates of the Variances of Foreign Exchange Rates," Center for Policy Research Working Papers 34, Center for Policy Research, Maxwell School, Syracuse University.
    9. Foster, Joshua, 2022. "Semi-nonparametric estimation of secret reserve prices in auctions," Economics Letters, Elsevier, vol. 220(C).
    10. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    11. Pieter J. van der Sluis, 1997. "Post-Sample Prediction Tests for the Efficient Method of Moments," Tinbergen Institute Discussion Papers 97-054/4, Tinbergen Institute.
    12. Gallant, A. Ronald & Hsieh, David & Tauchen, George, 1997. "Estimation of stochastic volatility models with diagnostics," Journal of Econometrics, Elsevier, vol. 81(1), pages 159-192, November.
    13. Rossi, Alessandro & Gallo, Giampiero M., 2006. "Volatility estimation via hidden Markov models," Journal of Empirical Finance, Elsevier, vol. 13(2), pages 203-230, March.
    14. Dongweí Su, 2003. "Risk, Return and Regulation in Chinese Stock Markets," World Scientific Book Chapters, in: Chinese Stock Markets A Research Handbook, chapter 3, pages 75-122, World Scientific Publishing Co. Pte. Ltd..
    15. Eleni Constantinou & Robert Georgiades & Avo Kazandjian & George Kouretas, 2005. "Mean and variance causality between the Cyprus Stock Exchange and major equity markets," Working Papers 0501, University of Crete, Department of Economics.
    16. Torben G. Andersen & Tim Bollerslev, 1997. "Answering the Critics: Yes, ARCH Models Do Provide Good Volatility Forecasts," NBER Working Papers 6023, National Bureau of Economic Research, Inc.
    17. Sandmann, G. & Koopman, Siem, 1996. "Maximum likelihood estimation of stochastic volatility models," LSE Research Online Documents on Economics 119161, London School of Economics and Political Science, LSE Library.
    18. Ñíguez, Trino-Manuel & Perote, Javier, 2017. "Moments expansion densities for quantifying financial risk," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 53-69.
    19. Kai-Li Wang & Christopher Fawson & Christopher B. Barrett & James B. McDonald, 2001. "A flexible parametric GARCH model with an application to exchange rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(4), pages 521-536.
    20. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • G0 - Financial Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ebl:ecbull:eb-01c10007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: John P. Conley (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.