IDEAS home Printed from https://ideas.repec.org/a/diw/diwvjh/89-4-2.html
   My bibliography  Save this article

The Cross-Section of Cryptocurrency Risk and Return

Author

Listed:
  • Steffen Günther
  • Christian Fieberg
  • Thorsten Poddig

Abstract

We analyze the cross-section of more than 1200 cryptocurrencies derived from 350 exchanges in the time period from January 2014 to June 2020. Specifically, we investigate whether well-known cross-sectional characteristics like beta (Fama/MacBeth (1973)), size (Banz (1981)) or momentum ( Jegadeesh/Titman (1993)) – which have been intensively investigated in the equities literature – explain the cross-section of cryptocurrency returns. We apply the monotonic relationship (Mr.) test developed by Patton and Timmermann (2010) to test for dependencies between characteristics and average portfolio returns and standard deviations. We extend the existing literature on cryptocurrencies showing that there are various characteristics which are able to explain cryptocurrency risk and return. Wir untersuchen den Querschnitt von über 1200 Kryptowährungen, gesammelt von 350 Handelsplätzen, in der Zeitspanne von Januar 2014 bis Juni 2020. Im speziellen untersuchen wir, ob weit verbreitete Charakteristika, wie Beta (Fama/MacBeth (1973)), Size (Banz (1981)) oder Momentum ( Jegadeesh/Titman (1993)) – die bereits intensiv in der Aktienliteratur untersucht werden – den Querschnitt der Kryptowährungsrenditen erklären können. Wir verwenden den Monotonic Relationship (MR) Test von Patton und Timmermann (2010) um auf Abhängigkeiten zwischen Charakteristika und durchschnittlichen Portfoliorenditen sowie Standardabweichungen zu testen. Wir erweitern die bestehende Literatur, indem wir zahlreiche Charakteristika identifizieren, die Risiko und Renditen von Kryptowährungen erklären können.

Suggested Citation

  • Steffen Günther & Christian Fieberg & Thorsten Poddig, 2020. "The Cross-Section of Cryptocurrency Risk and Return," Vierteljahrshefte zur Wirtschaftsforschung / Quarterly Journal of Economic Research, DIW Berlin, German Institute for Economic Research, vol. 89(4), pages 7-28.
  • Handle: RePEc:diw:diwvjh:89-4-2
    DOI: 10.3790/vjh.89.4.7
    as

    Download full text from publisher

    File URL: https://doi.org/10.3790/vjh.89.4.7
    Download Restriction: no

    File URL: https://libkey.io/10.3790/vjh.89.4.7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuanyuan Zhang & Stephen Chan & Jeffrey Chu & Hana Sulieman, 2020. "On the Market Efficiency and Liquidity of High-Frequency Cryptocurrencies in a Bull and Bear Market," JRFM, MDPI, vol. 13(1), pages 1-14, January.
    2. Zargar, Faisal Nazir & Kumar, Dilip, 2019. "Informational inefficiency of Bitcoin: A study based on high-frequency data," Research in International Business and Finance, Elsevier, vol. 47(C), pages 344-353.
    3. Chu, Jeffrey & Chan, Stephen & Zhang, Yuanyuan, 2020. "High frequency momentum trading with cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 52(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manahov, Viktor & Urquhart, Andrew, 2021. "The efficiency of Bitcoin: A strongly typed genetic programming approach to smart electronic Bitcoin markets," International Review of Financial Analysis, Elsevier, vol. 73(C).
    2. Helder Sebastião & Pedro Godinho, 2021. "Forecasting and trading cryptocurrencies with machine learning under changing market conditions," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
    3. Chan, Stephen & Chu, Jeffrey & Zhang, Yuanyuan & Nadarajah, Saralees, 2022. "An extreme value analysis of the tail relationships between returns and volumes for high frequency cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 59(C).
    4. Myeong Jun Kim & Sung Y. Park, 2023. "Testing for market efficiency in cryptocurrencies: evidence from a non-linear conditional quantile framework," Applied Economics Letters, Taylor & Francis Journals, vol. 30(16), pages 2245-2251, September.
    5. Ma, Chaoqun & Tian, Yonggang & Hsiao, Shisong & Deng, Liurui, 2022. "Monetary policy shocks and Bitcoin prices," Research in International Business and Finance, Elsevier, vol. 62(C).
    6. Carmen López-Martín & Sonia Benito Muela & Raquel Arguedas, 2021. "Efficiency in cryptocurrency markets: new evidence," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 403-431, September.
    7. Samuel Asante Gyamerah & Ning Cai, 2021. "Two-Stage Hybrid Machine Learning Model for High-Frequency Intraday Bitcoin Price Prediction Based on Technical Indicators, Variational Mode Decomposition, and Support Vector Regression," Complexity, Hindawi, vol. 2021, pages 1-15, December.
    8. Viktor Manahov, 2024. "The rapid growth of cryptocurrencies: How profitable is trading in digital money?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(2), pages 2214-2229, April.
    9. Gustavo Iamin, 2024. "Are crypto-investors overconfident? The role of risk propensity and demographics. Evidence from Brazil and Portugal," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 26(1), pages 147-173, November.
    10. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    11. Saralees Nadarajah & Emmanuel Afuecheta & Stephen Chan, 2021. "Dependence between bitcoin and African currencies," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(4), pages 1203-1218, August.
    12. Dunbar, Kwamie & Owusu-Amoako, Johnson, 2023. "Predictability of crypto returns: The impact of trading behavior," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    13. Liu, Jian & Julaiti, Jiansuer & Gou, Shangde, 2024. "Decomposing interconnectedness: A study of cryptocurrency spillover effects in global financial markets," Finance Research Letters, Elsevier, vol. 61(C).
    14. Klarin, Anton, 2020. "The decade-long cryptocurrencies and the blockchain rollercoaster: Mapping the intellectual structure and charting future directions," Research in International Business and Finance, Elsevier, vol. 51(C).
    15. Ben Nouir, Jihed & Ben Haj Hamida, Hayet, 2023. "How do economic policy uncertainty and geopolitical risk drive Bitcoin volatility?," Research in International Business and Finance, Elsevier, vol. 64(C).
    16. Wang, Pengfei & Li, Xiao & Shen, Dehua & Zhang, Wei, 2020. "How does economic policy uncertainty affect the bitcoin market?," Research in International Business and Finance, Elsevier, vol. 53(C).
    17. Mokni, Khaled & Youssef, Manel & Ajmi, Ahdi Noomen, 2022. "COVID-19 pandemic and economic policy uncertainty: The first test on the hedging and safe haven properties of cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 60(C).
    18. Almeida, José & Gonçalves, Tiago Cruz, 2023. "A systematic literature review of investor behavior in the cryptocurrency markets," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    19. Naeem, Muhammad Abubakr & Bouri, Elie & Peng, Zhe & Shahzad, Syed Jawad Hussain & Vo, Xuan Vinh, 2021. "Asymmetric efficiency of cryptocurrencies during COVID19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    20. Kakinaka, Shinji & Umeno, Ken, 2022. "Cryptocurrency market efficiency in short- and long-term horizons during COVID-19: An asymmetric multifractal analysis approach," Finance Research Letters, Elsevier, vol. 46(PA).

    More about this item

    Keywords

    Cryptocurrency; Cryptocurrency risk; Portfoliorendite;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwvjh:89-4-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bibliothek (email available below). General contact details of provider: https://edirc.repec.org/data/diwbede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.