IDEAS home Printed from https://ideas.repec.org/a/diw/diwvjh/89-4-2.html
   My bibliography  Save this article

The Cross-Section of Cryptocurrency Risk and Return

Author

Listed:
  • Steffen Günther
  • Christian Fieberg
  • Thorsten Poddig

Abstract

We analyze the cross-section of more than 1200 cryptocurrencies derived from 350 exchanges in the time period from January 2014 to June 2020. Specifically, we investigate whether well-known cross-sectional characteristics like beta (Fama/MacBeth (1973)), size (Banz (1981)) or momentum ( Jegadeesh/Titman (1993)) – which have been intensively investigated in the equities literature – explain the cross-section of cryptocurrency returns. We apply the monotonic relationship (Mr.) test developed by Patton and Timmermann (2010) to test for dependencies between characteristics and average portfolio returns and standard deviations. We extend the existing literature on cryptocurrencies showing that there are various characteristics which are able to explain cryptocurrency risk and return. Wir untersuchen den Querschnitt von über 1200 Kryptowährungen, gesammelt von 350 Handelsplätzen, in der Zeitspanne von Januar 2014 bis Juni 2020. Im speziellen untersuchen wir, ob weit verbreitete Charakteristika, wie Beta (Fama/MacBeth (1973)), Size (Banz (1981)) oder Momentum ( Jegadeesh/Titman (1993)) – die bereits intensiv in der Aktienliteratur untersucht werden – den Querschnitt der Kryptowährungsrenditen erklären können. Wir verwenden den Monotonic Relationship (MR) Test von Patton und Timmermann (2010) um auf Abhängigkeiten zwischen Charakteristika und durchschnittlichen Portfoliorenditen sowie Standardabweichungen zu testen. Wir erweitern die bestehende Literatur, indem wir zahlreiche Charakteristika identifizieren, die Risiko und Renditen von Kryptowährungen erklären können.

Suggested Citation

  • Steffen Günther & Christian Fieberg & Thorsten Poddig, 2020. "The Cross-Section of Cryptocurrency Risk and Return," Vierteljahrshefte zur Wirtschaftsforschung / Quarterly Journal of Economic Research, DIW Berlin, German Institute for Economic Research, vol. 89(4), pages 7-28.
  • Handle: RePEc:diw:diwvjh:89-4-2
    DOI: 10.3790/vjh.89.4.7
    as

    Download full text from publisher

    File URL: https://doi.org/10.3790/vjh.89.4.7
    Download Restriction: no

    File URL: https://libkey.io/10.3790/vjh.89.4.7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    2. Zargar, Faisal Nazir & Kumar, Dilip, 2019. "Informational inefficiency of Bitcoin: A study based on high-frequency data," Research in International Business and Finance, Elsevier, vol. 47(C), pages 344-353.
    3. Chu, Jeffrey & Chan, Stephen & Zhang, Yuanyuan, 2020. "High frequency momentum trading with cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 52(C).
    4. Yuanyuan Zhang & Stephen Chan & Jeffrey Chu & Hana Sulieman, 2020. "On the Market Efficiency and Liquidity of High-Frequency Cryptocurrencies in a Bull and Bear Market," JRFM, MDPI, vol. 13(1), pages 1-14, January.
    5. Patton, Andrew J. & Timmermann, Allan, 2010. "Monotonicity in asset returns: New tests with applications to the term structure, the CAPM, and portfolio sorts," Journal of Financial Economics, Elsevier, vol. 98(3), pages 605-625, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pätäri, Eero & Karell, Ville & Luukka, Pasi & Yeomans, Julian S, 2018. "Comparison of the multicriteria decision-making methods for equity portfolio selection: The U.S. evidence," European Journal of Operational Research, Elsevier, vol. 265(2), pages 655-672.
    2. Grønborg, Niels S. & Lunde, Asger & Timmermann, Allan & Wermers, Russ, 2021. "Picking funds with confidence," Journal of Financial Economics, Elsevier, vol. 139(1), pages 1-28.
    3. Sabine Artmann & Philipp Finter & Alexander Kempf & Stefan Koch & Erik Theissen, 2012. "The Cross-Section of German Stock Returns: New Data and New Evidence," Schmalenbach Business Review (sbr), LMU Munich School of Management, vol. 64(1), pages 20-43, January.
    4. Sebastian Müller & Martin Weber, 2014. "Evaluating the Rating of Stiftung Warentest: How Good Are Mutual Fund Ratings and Can They Be Improved?," European Financial Management, European Financial Management Association, vol. 20(2), pages 207-235, March.
    5. Richard Mawulawoe Ahadzie & Nagaratnam Jeyasreedharan, 2024. "Higher‐order moments and asset pricing in the Australian stock market," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 64(1), pages 75-128, March.
    6. Hoechle, Daniel & Schmid, Markus & Zimmermann, Heinz, 2017. "Does Unobservable Heterogeneity Matter for Portfolio-Based Asset Pricing Tests?," Working Papers on Finance 1717, University of St. Gallen, School of Finance, revised Mar 2020.
    7. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    8. Ahmad, Fawad & Oriani, Raffaele, 2022. "Investor attention, information acquisition, and value premium: A mispricing perspective," International Review of Financial Analysis, Elsevier, vol. 79(C).
    9. Manahov, Viktor & Urquhart, Andrew, 2021. "The efficiency of Bitcoin: A strongly typed genetic programming approach to smart electronic Bitcoin markets," International Review of Financial Analysis, Elsevier, vol. 73(C).
    10. Hollstein, Fabian & Nguyen, Duc Binh Benno & Prokopczuk, Marcel & Wese Simen, Chardin, 2019. "International tail risk and World Fear," Journal of International Money and Finance, Elsevier, vol. 93(C), pages 244-259.
    11. Matias D. Cattaneo & Richard K. Crump & Max H. Farrell & Ernst Schaumburg, 2020. "Characteristic-Sorted Portfolios: Estimation and Inference," The Review of Economics and Statistics, MIT Press, vol. 102(3), pages 531-551, July.
    12. Zaremba, Adam & Czapkiewicz, Anna, 2017. "The cross section of international government bond returns," Economic Modelling, Elsevier, vol. 66(C), pages 171-183.
    13. Zaremba, Adam & Mikutowski, Mateusz & Szczygielski, Jan Jakub & Karathanasopoulos, Andreas, 2021. "The alpha momentum effect in commodity markets," Energy Economics, Elsevier, vol. 93(C).
    14. Daeyun Kang & Doojin Ryu & Robert I. Webb, 2025. "Bitcoin as a financial asset: a survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 11(1), pages 1-28, December.
    15. Zaremba, Adam & Szyszka, Adam & Karathanasopoulos, Andreas & Mikutowski, Mateusz, 2021. "Herding for profits: Market breadth and the cross-section of global equity returns," Economic Modelling, Elsevier, vol. 97(C), pages 348-364.
    16. Helder Sebastião & Pedro Godinho, 2021. "Forecasting and trading cryptocurrencies with machine learning under changing market conditions," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
    17. Zaremba, Adam & Maydybura, Alina, 2019. "The cross-section of returns in frontier equity markets: Integrated or segmented pricing?," Emerging Markets Review, Elsevier, vol. 38(C), pages 219-238.
    18. Magnus Dahlquist & José Vicente Martinez & Paul Söderlind, 2017. "Individual Investor Activity and Performance," The Review of Financial Studies, Society for Financial Studies, vol. 30(3), pages 866-899.
    19. Xyngis, Georgios, 2017. "Business-cycle variation in macroeconomic uncertainty and the cross-section of expected returns: Evidence for scale-dependent risks," Journal of Empirical Finance, Elsevier, vol. 44(C), pages 43-65.
    20. Cao, Ying & von Reibnitz, Anna & Warren, Geoffrey J., 2020. "Return dispersion and fund performance: Australia – The land of opportunity?," Pacific-Basin Finance Journal, Elsevier, vol. 60(C).

    More about this item

    Keywords

    Cryptocurrency; Cryptocurrency risk; Portfoliorendite;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwvjh:89-4-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bibliothek (email available below). General contact details of provider: https://edirc.repec.org/data/diwbede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.