IDEAS home Printed from https://ideas.repec.org/a/col/000438/013966.html

Trimestralización del Producto Interno Bruto en Colombia

Author

Listed:
  • Mauricio Carrizosa
  • Germ�n Botero

Abstract

“Diversas razones justifican la conveniencia de contar con indicadores trimestrales de la actividad económica. Pueden senalarse por lo menos tres de ellas. En primer término, la información de corto plazo obvia mente permite un seguimiento más frecuente de la evolución de la actividad económica, lo cual es conveniente para la formulación de la política económica y empresarial, al poder precisarse mejor los momentos en que ocurren cambios en el ritmo de la producción. En segundo término, la información trimestral es también más oportuna. Usualmente, los indicadores de corto plazo están disponibles antes que los indicadores que sirven de base para los cálculos anuales definitivos de producción, de suerte que los primeros pueden permitir una evaluación más rápida del desempeno sectorial y global. Finalmente, la disponibilidad de estimativos trimestrales amplia significativamente el acopio de información para desarrollar análisis económicos. Con datos trimestrales se puede, por ejemplo, establecer con mayor precisión la longitud de los retardos que supuestamente existen entre las políticas macroeconómicas y la producción y los precios. Dos problemas fundamentales corresponde abordar cuando se trata de trimestralizar la actividad económica. En primer término, se debe emplear un análisis de regresión para vincular los valores anuales del PIB a indicadores disponibles trimestralmente. En segundo término, corresponde definir un procedimiento para distribuir el error que emerge entre las cifras obtenidas a partir de las ecuaciones estimadas, y los datos anuales originales. El objetivo principal de este trabajo es la definición correcta de este procedimiento.”

Suggested Citation

  • Mauricio Carrizosa & Germ�n Botero, 1984. "Trimestralización del Producto Interno Bruto en Colombia," Coyuntura Económica, Fedesarrollo, vol. 14(4), pages 119-127.
  • Handle: RePEc:col:000438:013966
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/11445/2525
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chow, Gregory C & Lin, An-loh, 1971. "Best Linear Unbiased Interpolation, Distribution, and Extrapolation of Time Series by Related Series," The Review of Economics and Statistics, MIT Press, vol. 53(4), pages 372-375, November.
    2. Victor A. Ginsburgh, 1973. "A Further Note on the Derivation of Quarterly Figures Consistent with Annual Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 22(3), pages 368-374, November.
    3. Fernandez, Roque B, 1981. "A Methodological Note on the Estimation of Time Series," The Review of Economics and Statistics, MIT Press, vol. 63(3), pages 471-476, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enrique López Enciso, 2019. "Dos tradiciones en la medición del ciclo: historia general y desarrollos en Colombia," Tiempo y Economía, Universidad de Bogotá Jorge Tadeo Lozano, vol. 6(1), pages 77-142.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nijman, Th. & Palm, F.C., 1984. "Missing observations in a quarterly model for the aggregate labor market in the Netherlands," Serie Research Memoranda 0013, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    2. Campbell Leith & Jim Malley, 2007. "A Sectoral Analysis of Price-Setting Behavior in U.S. Manufacturing Industries," The Review of Economics and Statistics, MIT Press, vol. 89(2), pages 335-342, May.
    3. Massimo Gerli & Giovanni Marini, 2006. "Spatial and Temporal Time Series Conversion: A Consistent Estimator of the Error Variance-Covariance Matrix," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2005(3), pages 373-405.
    4. Litterman, Robert B, 1983. "A Random Walk, Markov Model for the Distribution of Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(2), pages 169-173, April.
    5. Kim Abildgren, 2016. "A century of macro-financial linkages," Journal of Financial Economic Policy, Emerald Group Publishing Limited, vol. 8(4), pages 458-471, November.
    6. Richard M. Todd, 1988. "Implementing Bayesian vector autoregressions," Working Papers 384, Federal Reserve Bank of Minneapolis.
    7. Pieroni, Luca & d'Agostino, Giorgio & Lorusso, Marco, 2008. "Can we declare military Keynesianism dead?," Journal of Policy Modeling, Elsevier, vol. 30(5), pages 675-691.
    8. Cuevas Ángel & Quilis Enrique M. & Espasa Antoni, 2015. "Quarterly Regional GDP Flash Estimates by Means of Benchmarking and Chain Linking," Journal of Official Statistics, Sciendo, vol. 31(4), pages 627-647, December.
    9. Tommaso Proietti, 2004. "On the Estimation of Nonlinearly Aggregated Mixed Models," Econometrics 0411012, University Library of Munich, Germany.
    10. Tommaso Proietti, 2011. "Multivariate temporal disaggregation with cross-sectional constraints," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(7), pages 1455-1466, June.
    11. Bernardí Cabred & Jose Pavía, 1999. "EstimatingJ (>1) quarterly time series in fulfilling annual and quarterly constraints," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 5(3), pages 339-349, August.
    12. Travaglini, Guido, 2010. "Supervised Principal Components and Factor Instrumental Variables. An Application to Violent CrimeTrends in the US, 1982-2005," MPRA Paper 22077, University Library of Munich, Germany.
    13. Jürgen Bierbaumer & Sandra Bilek-Steindl, 2017. "Quarterly National Accounts – Manual for Austria. Description of Applied Methods and Data Sources," WIFO Studies, WIFO, number 60427, June.
    14. Askari, S. & Montazerin, N. & Zarandi, M.H. Fazel, 2015. "Forecasting semi-dynamic response of natural gas networks to nodal gas consumptions using genetic fuzzy systems," Energy, Elsevier, vol. 83(C), pages 252-266.
    15. Wolfgang Polasek & Richard Sellner, 2008. "Spatial Chow-Lin Methods: Bayesian And Ml Forecast Comparisons," Working Paper series 38_08, Rimini Centre for Economic Analysis.
    16. Wenzel, Lars & Wolf, André, 2013. "Short-term forecasting with business surveys: Evidence for German IHK data at federal state level," HWWI Research Papers 140, Hamburg Institute of International Economics (HWWI).
    17. Gonzalo Camba-Mendez & Ana Lamo, 2004. "Short-term monitoring of fiscal policy discipline," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(2), pages 247-265.
    18. Huang, Yu-Lieh, 2012. "Measuring business cycles: A temporal disaggregation model with regime switching," Economic Modelling, Elsevier, vol. 29(2), pages 283-290.
    19. Ricardo Sanz, 1983. "Desagregación Temporal de Series Económicas," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 20(59), pages 85-100.
    20. Tao Zha & Kaiji Chen, 2017. "The Asymmetric Transmission of China's Monetary Policy," 2017 Meeting Papers 516, Society for Economic Dynamics.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • E01 - Macroeconomics and Monetary Economics - - General - - - Measurement and Data on National Income and Product Accounts and Wealth; Environmental Accounts
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000438:013966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Patricia Monroy (email available below). General contact details of provider: https://edirc.repec.org/data/fedesco.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.