IDEAS home Printed from
   My bibliography  Save this article

Valoración de derivados europeos con mixtura de distribuciones Weibull


  • Andrés Mauricio Molina
  • José Alfredo Jiménez


El modelo Black-Scholes para valoración de opciones europeas se usa bastante en el mercado por su fácil ejecución. Sin embargo, empieza a ser poco preciso en diferentes activos cuya dinámica no es de una distribución lognormal, por lo que se necesita buscar nuevas distribuciones para valorar opciones emitidas sobre diferentes activos subyacentes. Varios investigadores han trabajado en nuevas fórmulas de valoración de derivados suponiendo diferentes distribuciones ya sea para el precio del activo subyacente o para su retorno. Este artículo presenta dos fórmulas para valoración de activos: una modifica la fórmula usando una distribución de Weibull de dos parámetros propuesta por Savickas (2002) anadiendo dos nuevos parámetros (escala y localización) y otra supone que la distribución del activo es una mixtura de distribuciones de Weibull. Se presentan también comparaciones de estos modelos con otros ya existentes como Black-Scholes y el modelo de Savickas con distribución Weibull simple. ***** The Black-Scholes valuation model for European options is widely used in the stock markets due to its easy implementation. However, the model is not accurate for different assets whose dynamics do not follow those of a lognormal distribution, so it is necessary to investigate new distributions to price different options written on various underlying assets. Several researchers have worked on new valuation formulas, assuming different distributions for either the price of the underlying asset or for the return of the same. This paper presents two methods for European derivatives valuation, one of them, modifying the formula using a Weibull distribution with two parameters given by Savickas (2002) adding two new parameters (scale and location), and another assuming that the underlying distribution is a Weibull mixture. Comparisons are also presented with these models against existing models such as the Black-Scholes model and Savickas with a simple Weibull distribution.

Suggested Citation

  • Andrés Mauricio Molina & José Alfredo Jiménez, 2015. "Valoración de derivados europeos con mixtura de distribuciones Weibull," Revista Cuadernos de Economia, Universidad Nacional de Colombia, FCE, CID, March.
  • Handle: RePEc:col:000093:012720

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    2. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    2. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    3. Falko Baustian & Katev{r}ina Filipov'a & Jan Posp'iv{s}il, 2019. "Solution of option pricing equations using orthogonal polynomial expansion," Papers 1912.06533,, revised Jun 2020.
    4. Bogdan Negrea & Bertrand Maillet & Emmanuel Jurczenko, 2002. "Skewness and Kurtosis Implied by Option Prices: A Second Comment," FMG Discussion Papers dp419, Financial Markets Group.
    5. Monica Billio & Bertrand Maillet & Loriana Pelizzon, 2022. "A meta-measure of performance related to both investors and investments characteristics," Annals of Operations Research, Springer, vol. 313(2), pages 1405-1447, June.
    6. Hosam Ki & Byungwook Choi & Kook‐Hyun Chang & Miyoung Lee, 2005. "Option pricing under extended normal distribution," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(9), pages 845-871, September.
    7. Damien Ackerer & Damir Filipović & Sergio Pulido, 2018. "The Jacobi stochastic volatility model," Finance and Stochastics, Springer, vol. 22(3), pages 667-700, July.
    8. Williamson, Brendon & Villano, Renato A. & Fleming, Euan M., 2008. "Structuring Exotic Options Contracts on Water to Improve the Efficiency of Resource Allocation in the Water Spot Market," 2008 Conference (52nd), February 5-8, 2008, Canberra, Australia 5992, Australian Agricultural and Resource Economics Society.
    9. Gabriele Fiorentini & Angel León & Gonzalo Rubio, "undated". "Short-term options with stochastic volatility: Estimation and empirical performance," Studies on the Spanish Economy 02, FEDEA.
    10. Bodo Herzog & Sufyan Osamah, 2019. "Reverse Engineering of Option Pricing: An AI Application," IJFS, MDPI, vol. 7(4), pages 1-12, November.
    11. León, à ngel & Mencía, Javier & Sentana, Enrique, 2009. "Parametric Properties of Semi-Nonparametric Distributions, with Applications to Option Valuation," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(2), pages 176-192.
    12. Yuji Yamada & James Primbs, 2004. "Properties of Multinomial Lattices with Cumulants for Option Pricing and Hedging," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(3), pages 335-365, September.
    13. Vahamaa, Sami, 2005. "Option-implied asymmetries in bond market expectations around monetary policy actions of the ECB," Journal of Economics and Business, Elsevier, vol. 57(1), pages 23-38.
    14. Marie Brière & Kamal Chancari, 2004. "Perception des risques sur les marchés, construction d'un indice élaboré à partir des smiles d'options et test de stratégies," Revue d'économie politique, Dalloz, vol. 114(4), pages 527-555.
    15. J. A. Jiménez & V. Arunachalam & G. M. Serna, 2015. "Option Pricing Based On A Log–Skew–Normal Mixture," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(08), pages 1-22, December.
    16. Igor Halperin, 2020. "Non-Equilibrium Skewness, Market Crises, and Option Pricing: Non-Linear Langevin Model of Markets with Supersymmetry," Papers 2011.01417,, revised Dec 2021.
    17. Topaloglou, Nikolas & Vladimirou, Hercules & Zenios, Stavros A., 2008. "Pricing options on scenario trees," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 283-298, February.
    18. Äijö, Janne, 2008. "Impact of US and UK macroeconomic news announcements on the return distribution implied by FTSE-100 index options," International Review of Financial Analysis, Elsevier, vol. 17(2), pages 242-258.
    19. Yanhui Shen, 2023. "American Option Pricing using Self-Attention GRU and Shapley Value Interpretation," Papers 2310.12500,
    20. Pakorn Aschakulporn & Jin E. Zhang, 2022. "Bakshi, Kapadia, and Madan (2003) risk-neutral moment estimators: A Gram–Charlier density approach," Review of Derivatives Research, Springer, vol. 25(3), pages 233-281, October.

    More about this item


    distribución Weibull; mixtura de Weibull; valoración; opciones.;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C69 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Other
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000093:012720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Facultad de Ciencias Economicas Unal (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.