IDEAS home Printed from https://ideas.repec.org/a/cbk/journl/v9y2020i2p87-107.html
   My bibliography  Save this article

Econophysical bourse volatility – Global Evidence

Author

Listed:
  • Bikramaditya Ghosh

    (Institute of Management, Christ University, Bangalore, India)

  • Krishna MC

    (Institute of Management, Christ University, Bangalore, India)

Abstract

Financial Reynolds number (Re) has been proven to have the capacity to predict volatility, herd behaviour and nascent bubble in any stock market (bourse) across the geographical boundaries. This study examines forty two bourses (representing same number of countries) for the evidence of the same. This study finds specific clusters of stock markets based on embedded volatility, herd behaviour and nascent bubble. Overall the volatility distribution has been found to be Gaussian in nature. Information asymmetry hinted towards a well-discussed parameter of ‘financial literacy’ as well. More than eighty percent of indices under consideration showed traces of mild herd as well as bubble. The same indices were all found to be predictable, despite being stochastic time series. In the end, financial Reynolds number (Re) has been proved to be universal in nature, as far as volatility, herd behaviour and nascent bubble are concerned.

Suggested Citation

  • Bikramaditya Ghosh & Krishna MC, 2020. "Econophysical bourse volatility – Global Evidence," Journal of Central Banking Theory and Practice, Central bank of Montenegro, vol. 9(2), pages 87-107.
  • Handle: RePEc:cbk:journl:v:9:y:2020:i:2:p:87-107
    as

    Download full text from publisher

    File URL: http://www.cbcg.me/repec/cbk/journl/vol9no2-5.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nikola Fabris, 2018. "Challenges for Modern Monetary Policy," Journal of Central Banking Theory and Practice, Central bank of Montenegro, vol. 7(2), pages 5-24.
    2. Taufeeq Ajaz, 2019. "Nonlinear Reaction functions: Evidence from India," Journal of Central Banking Theory and Practice, Central bank of Montenegro, vol. 8(1), pages 111-132.
    3. Pan, Raj Kumar & Sinha, Sitabhra, 2008. "Inverse-cubic law of index fluctuation distribution in Indian markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2055-2065.
    4. Zhang, Chao & Huang, Lu, 2010. "A quantum model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5769-5775.
    5. Ormos, Mihály & Timotity, Dusán, 2016. "Market microstructure during financial crisis: Dynamics of informed and heuristic-driven trading," Finance Research Letters, Elsevier, vol. 19(C), pages 60-66.
    6. Zhang, Qunzhi & Sornette, Didier & Balcilar, Mehmet & Gupta, Rangan & Ozdemir, Zeynel Abidin & Yetkiner, Hakan, 2016. "LPPLS bubble indicators over two centuries of the S&P 500 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 126-139.
    7. Laurent Laloux & Marc Potters & Rama Cont & Jean-Pierre Aguilar & Jean-Philippe Bouchaud, 1998. "Are Financial Crashes Predictable?," Papers cond-mat/9804111, arXiv.org.
    8. Chao Zhang & Lu Huang, 2010. "A quantum model for the stock market," Papers 1009.4843, arXiv.org, revised Oct 2010.
    9. A. Abhyankar & L. S. Copeland & W. Wong, 1995. "Moment condition failure in high frequency financial data: evidence from the S&P 500," Applied Economics Letters, Taylor & Francis Journals, vol. 2(8), pages 288-290.
    10. Parameswaran Gopikrishnan & Martin Meyer & Luis A Nunes Amaral & H Eugene Stanley, 1998. "Inverse Cubic Law for the Probability Distribution of Stock Price Variations," Papers cond-mat/9803374, arXiv.org, revised May 1998.
    11. Cornelis A. Los, 2004. "Measuring Financial Cash Flow and Term Structure Dynamics," Finance 0409046, University Library of Munich, Germany.
    12. P. Gopikrishnan & M. Meyer & L.A.N. Amaral & H.E. Stanley, 1998. "Inverse cubic law for the distribution of stock price variations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 3(2), pages 139-140, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jasmina Jekni'c-Dugi'c & Sonja Radi' c & Igor Petrovi'c & Momir Arsenijevi'c & Miroljub Dugi'c, 2018. "Quantum Brownian oscillator for the stock market," Papers 1901.10544, arXiv.org.
    2. Begušić, Stjepan & Kostanjčar, Zvonko & Eugene Stanley, H. & Podobnik, Boris, 2018. "Scaling properties of extreme price fluctuations in Bitcoin markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 400-406.
    3. Trindade, Marco A.S. & Floquet, Sergio & Filho, Lourival M. Silva, 2020. "Portfolio theory, information theory and Tsallis statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    4. Lux, Thomas, 2008. "Stochastic behavioral asset pricing models and the stylized facts," Economics Working Papers 2008-08, Christian-Albrechts-University of Kiel, Department of Economics.
    5. Todorova, Lora & Vogt, Bodo, 2011. "Power law distribution in high frequency financial data? An econometric analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4433-4444.
    6. Chakraborty, Abhijit & Easwaran, Soumya & Sinha, Sitabhra, 2018. "Deviations from universality in the fluctuation behavior of a heterogeneous complex system reveal intrinsic properties of components: The case of the international currency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 599-610.
    7. Xing, Dun-Zhong & Li, Hai-Feng & Li, Jiang-Cheng & Long, Chao, 2021. "Forecasting price of financial market crash via a new nonlinear potential GARCH model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    8. Peng Liu & Yanyan Zheng, 2022. "Precision measurement of the return distribution property of the Chinese stock market index," Papers 2209.08521, arXiv.org, revised Nov 2023.
    9. Sitabhra Sinha & Uday Kovur, 2013. "Uncovering the network structure of the world currency market: Cross-correlations in the fluctuations of daily exchange rates," Papers 1305.0239, arXiv.org.
    10. Jaroonchokanan, Nawee & Termsaithong, Teerasit & Suwanna, Sujin, 2022. "Dynamics of hierarchical clustering in stocks market during financial crises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    11. Stjepan Beguv{s}i'c & Zvonko Kostanjv{c}ar & H. Eugene Stanley & Boris Podobnik, 2018. "Scaling properties of extreme price fluctuations in Bitcoin markets," Papers 1803.08405, arXiv.org.
    12. Gu, Gao-Feng & Chen, Wei & Zhou, Wei-Xing, 2008. "Empirical distributions of Chinese stock returns at different microscopic timescales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 495-502.
    13. Lux, Thomas, 2008. "Stochastic behavioral asset pricing models and the stylized facts," Kiel Working Papers 1426, Kiel Institute for the World Economy (IfW Kiel).
    14. Aoki, Masanao, 2002. "Open models of share markets with two dominant types of participants," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 199-216, October.
    15. Godinho, Cresus F.L. & Abreu, Everton M.C., 2021. "The analysis of the dynamic optimization problem in econophysics from the point of view of the symplectic approach for constrained systems," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    16. Klein, A. & Urbig, D. & Kirn, S., 2008. "Who Drives the Market? Estimating a Heterogeneous Agent-based Financial Market Model Using a Neural Network Approach," MPRA Paper 14433, University Library of Munich, Germany.
    17. Peng Yue & Qing Cai & Wanfeng Yan & Wei-Xing Zhou, 2020. "Information flow networks of Chinese stock market sectors," Papers 2004.08759, arXiv.org.
    18. Liviu-Adrian Cotfas, 2012. "A quantum mechanical model for the rate of return," Papers 1211.1938, arXiv.org.
    19. Ichiki, Shingo & Nishinari, Katsuhiro, 2015. "Simple stochastic order-book model of swarm behavior in continuous double auction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 304-314.
    20. Guevara Hidalgo, Esteban, 2017. "Bin size independence in intra-day seasonalities for relative prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 722-732.

    More about this item

    Keywords

    Financial Reynolds number; volatility; Herding; Bubble; Econophysics;
    All these keywords.

    JEL classification:

    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G41 - Financial Economics - - Behavioral Finance - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making in Financial Markets
    • A12 - General Economics and Teaching - - General Economics - - - Relation of Economics to Other Disciplines

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cbk:journl:v:9:y:2020:i:2:p:87-107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/cbmgvme.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.