IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v389y2010i24p5769-5775.html
   My bibliography  Save this article

A quantum model for the stock market

Author

Listed:
  • Zhang, Chao
  • Huang, Lu

Abstract

Beginning with several basic hypotheses of quantum mechanics, we give a new quantum model in econophysics. In this model, we define wave functions and operators of the stock market to establish the Schrödinger equation for stock price. Based on this theoretical framework, an example of a driven infinite quantum well is considered, in which we use a cosine distribution to simulate the state of stock price in equilibrium. After adding an external field into the Hamiltonian to analytically calculate the wave function, the distribution and the average value of the rate of return are shown.

Suggested Citation

  • Zhang, Chao & Huang, Lu, 2010. "A quantum model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5769-5775.
  • Handle: RePEc:eee:phsmap:v:389:y:2010:i:24:p:5769-5775
    DOI: 10.1016/j.physa.2010.09.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437110007880
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bagarello, F., 2007. "Stock markets and quantum dynamics: A second quantized description," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 283-302.
    2. Schaden, Martin, 2002. "Quantum finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 511-538.
    3. Piotrowski, Edward W. & Sładkowski, Jan, 2005. "Quantum diffusion of prices and profits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 345(1), pages 185-195.
    4. Linden, Mikael, 2005. "Estimating the distribution of volatility of realized stock returns and exchange rate changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(2), pages 573-583.
    5. Ataullah, Ali & Davidson, Ian & Tippett, Mark, 2009. "A wave function for stock market returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 455-461.
    6. Shi, Leilei, 2006. "Does security transaction volume–price behavior resemble a probability wave?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 419-436.
    7. Martin Schaden, 2002. "Quantum Finance," Papers physics/0203006, arXiv.org, revised Aug 2002.
    8. Kirill Ilinski, 1997. "Physics of Finance," Papers hep-th/9710148, arXiv.org.
    9. Fabio Bagarello, 2009. "A quantum statistical approach to simplified stock markets," Papers 0907.2531, arXiv.org.
    10. F. Bagarello, 2009. "Simplified stock markets described by number operators," Papers 0904.3213, arXiv.org.
    11. Ye, C. & Huang, J.P., 2008. "Non-classical oscillator model for persistent fluctuations in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1255-1263.
    12. Fabio Bagarello, 2007. "The Heisenberg picture in the analysis of stock markets and in other sociological contexts," Quality & Quantity: International Journal of Methodology, Springer, vol. 41(4), pages 533-544, August.
    13. Bagarello, F., 2009. "A quantum statistical approach to simplified stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(20), pages 4397-4406.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liviu-Adrian Cotfas, 2012. "Finite quantum mechanical model for the stock market," Papers 1208.6146, arXiv.org, revised Sep 2012.
    2. Pouria Pedram, 2011. "The minimal length uncertainty and the quantum model for the stock market," Papers 1111.6859, arXiv.org, revised Jan 2012.
    3. Jack Sarkissian, 2016. "Spread, volatility, and volume relationship in financial markets and market making profit optimization," Papers 1606.07381, arXiv.org.
    4. Liviu-Adrian Cotfas, 2012. "A quantum mechanical model for the rate of return," Papers 1211.1938, arXiv.org.
    5. Xiangyi Meng & Jian-Wei Zhang & Jingjing Xu & Hong Guo, 2014. "Quantum spatial-periodic harmonic model for daily price-limited stock markets," Papers 1405.4490, arXiv.org.
    6. Liviu-Adrian Cotfas, 2012. "A finite-dimensional quantum model for the stock market," Papers 1204.4614, arXiv.org, revised Sep 2012.
    7. Meng, Xiangyi & Zhang, Jian-Wei & Xu, Jingjing & Guo, Hong, 2015. "Quantum spatial-periodic harmonic model for daily price-limited stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 154-160.
    8. Jack Sarkissian, 2016. "Quantum theory of securities price formation in financial markets," Papers 1605.04948, arXiv.org, revised May 2016.
    9. Gao, Tingting & Chen, Yu, 2017. "A quantum anharmonic oscillator model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 307-314.
    10. Cotfas, Liviu-Adrian, 2013. "A finite-dimensional quantum model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(2), pages 371-380.
    11. Pedram, Pouria, 2012. "The minimal length uncertainty and the quantum model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2100-2105.
    12. Pineiro-Chousa, Juan & Vizcaíno-González, Marcos, 2016. "A quantum derivation of a reputational risk premium," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 304-309.
    13. Meng, Xiangyi & Zhang, Jian-Wei & Guo, Hong, 2016. "Quantum Brownian motion model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 281-288.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:389:y:2010:i:24:p:5769-5775. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.