IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i5p2100-2105.html
   My bibliography  Save this article

The minimal length uncertainty and the quantum model for the stock market

Author

Listed:
  • Pedram, Pouria

Abstract

We generalize the recently proposed quantum model for the stock market by Zhang and Huang to make it consistent with the discrete nature of the stock price. In this formalism, the price of the stock and its trend satisfy the generalized uncertainty relation and the corresponding generalized Hamiltonian contains an additional term proportional to the fourth power of the trend. We study a driven infinite quantum well where information as the external field periodically fluctuates and show that the presence of the minimal trading value of stocks results in a positive shift in the characteristic frequencies of the quantum system. The connection between the information frequency and the transition probabilities is discussed finally.

Suggested Citation

  • Pedram, Pouria, 2012. "The minimal length uncertainty and the quantum model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2100-2105.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:5:p:2100-2105
    DOI: 10.1016/j.physa.2011.11.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437111008788
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bagarello, F., 2007. "Stock markets and quantum dynamics: A second quantized description," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 283-302.
    2. Schaden, Martin, 2002. "Quantum finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 511-538.
    3. Zhang, Chao & Huang, Lu, 2010. "A quantum model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5769-5775.
    4. Ataullah, Ali & Davidson, Ian & Tippett, Mark, 2009. "A wave function for stock market returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 455-461.
    5. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    6. Martin Schaden, 2002. "Quantum Finance," Papers physics/0203006, arXiv.org, revised Aug 2002.
    7. Kirill Ilinski, 1997. "Physics of Finance," Papers hep-th/9710148, arXiv.org.
    8. Fabio Bagarello, 2009. "A quantum statistical approach to simplified stock markets," Papers 0907.2531, arXiv.org.
    9. Chao Zhang & Lu Huang, 2010. "A quantum model for the stock market," Papers 1009.4843, arXiv.org, revised Oct 2010.
    10. F. Bagarello, 2009. "Simplified stock markets described by number operators," Papers 0904.3213, arXiv.org.
    11. Ye, C. & Huang, J.P., 2008. "Non-classical oscillator model for persistent fluctuations in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1255-1263.
    12. Fabio Bagarello, 2007. "The Heisenberg picture in the analysis of stock markets and in other sociological contexts," Quality & Quantity: International Journal of Methodology, Springer, vol. 41(4), pages 533-544, August.
    13. Bagarello, F., 2009. "A quantum statistical approach to simplified stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(20), pages 4397-4406.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ashtiani, Mehrdad & Azgomi, Mohammad Abdollahi, 2015. "A survey of quantum-like approaches to decision making and cognition," Mathematical Social Sciences, Elsevier, vol. 75(C), pages 49-80.
    2. Liviu-Adrian Cotfas, 2012. "A quantum mechanical model for the rate of return," Papers 1211.1938, arXiv.org.
    3. Liviu-Adrian Cotfas, 2012. "A finite-dimensional quantum model for the stock market," Papers 1204.4614, arXiv.org, revised Sep 2012.
    4. Meng, Xiangyi & Zhang, Jian-Wei & Xu, Jingjing & Guo, Hong, 2015. "Quantum spatial-periodic harmonic model for daily price-limited stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 154-160.
    5. Cotfas, Liviu-Adrian, 2013. "A finite-dimensional quantum model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(2), pages 371-380.
    6. Meng, Xiangyi & Zhang, Jian-Wei & Guo, Hong, 2016. "Quantum Brownian motion model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 281-288.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:5:p:2100-2105. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.