IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i2p371-380.html
   My bibliography  Save this article

A finite-dimensional quantum model for the stock market

Author

Listed:
  • Cotfas, Liviu-Adrian

Abstract

We present a finite-dimensional version of the quantum model for the stock market proposed in C. Zhang and L. Huang [A quantum model for the stock market, Physica A 389 (2010) 5769]. Our approach is an attempt to make this model consistent with the discrete nature of the stock price and is based on the mathematical formalism used in the case of the quantum systems with finite-dimensional Hilbert space. The rate of return is a discrete variable corresponding to the coordinate in the case of quantum systems, and the operator of the conjugate variable describing the trend of the stock return is defined in terms of the finite Fourier transform. The stock return in equilibrium is described by a finite Gaussian function, and the time evolution of the stock price, directly related to the rate of return, is obtained by numerically solving a Schrödinger type equation.

Suggested Citation

  • Cotfas, Liviu-Adrian, 2013. "A finite-dimensional quantum model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(2), pages 371-380.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:2:p:371-380
    DOI: 10.1016/j.physa.2012.09.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112008448
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pouria Pedram, 2011. "The minimal length uncertainty and the quantum model for the stock market," Papers 1111.6859, arXiv.org, revised Jan 2012.
    2. Pedram, Pouria, 2012. "The minimal length uncertainty and the quantum model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2100-2105.
    3. Zhang, Chao & Huang, Lu, 2010. "A quantum model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5769-5775.
    4. Choustova, Olga Al., 2007. "Quantum Bohmian model for financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 304-314.
    5. Kirill Ilinski, 1997. "Physics of Finance," Papers hep-th/9710148, arXiv.org.
    6. Fabio Bagarello, 2009. "A quantum statistical approach to simplified stock markets," Papers 0907.2531, arXiv.org.
    7. Chao Zhang & Lu Huang, 2010. "A quantum model for the stock market," Papers 1009.4843, arXiv.org, revised Oct 2010.
    8. Bagarello, F., 2009. "A quantum statistical approach to simplified stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(20), pages 4397-4406.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiangyi Meng & Jian-Wei Zhang & Jingjing Xu & Hong Guo, 2014. "Quantum spatial-periodic harmonic model for daily price-limited stock markets," Papers 1405.4490, arXiv.org.
    2. Meng, Xiangyi & Zhang, Jian-Wei & Xu, Jingjing & Guo, Hong, 2015. "Quantum spatial-periodic harmonic model for daily price-limited stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 154-160.
    3. Gao, Tingting & Chen, Yu, 2017. "A quantum anharmonic oscillator model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 307-314.
    4. Liviu-Adrian Cotfas & Camelia Delcea & Nicolae Cotfas, 2014. "Exact solution of a generalized version of the Black-Scholes equation," Papers 1411.2628, arXiv.org.
    5. Pineiro-Chousa, Juan & Vizcaíno-González, Marcos, 2016. "A quantum derivation of a reputational risk premium," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 304-309.
    6. Meng, Xiangyi & Zhang, Jian-Wei & Guo, Hong, 2016. "Quantum Brownian motion model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 281-288.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:2:p:371-380. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.