IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v66y2020i12id403-2020-pse.html
   My bibliography  Save this article

Effect of planting density and row spacing on the yielding of soybean (Glycine max L. Merrill)

Author

Listed:
  • Janusz Prusiński
  • Radosław Nowicki

    (Department of Agronomy, Faculty of Agriculture and Biotechnology, University of Science and Technology, Bydgoszcz, Poland)

Abstract

The paper presents the effect of planting density and row spacing on the growth, development and yield of soybean, cv. Merlin, under very diversified thermal and humidity conditions in the north-central part of Poland. The field experiment was performed in 2016-2019. Three planting densities were applied (70, 90 and 110 seeds per 1 m2) with two row spacing (16 and 32 cm), in 4 replications. Under good humidity and thermal conditions in 2016 and 2017, the yield of seeds and protein in soybean was 3.3 times higher than if exposed to extreme drought and accompanying high air temperatures in 2018 and 2019. The highly diversified thermal and humidity conditions also contributed to a significant decrease in the effect of the factors applied on the structural yield components, leaf area index and dry matter of nodules. As a result, no need of increasing soybean density was observed; along with row spacing, it should be chosen according to the region.

Suggested Citation

  • Janusz Prusiński & Radosław Nowicki, 2020. "Effect of planting density and row spacing on the yielding of soybean (Glycine max L. Merrill)," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 66(12), pages 616-623.
  • Handle: RePEc:caa:jnlpse:v:66:y:2020:i:12:id:403-2020-pse
    DOI: 10.17221/403/2020-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/403/2020-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/403/2020-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/403/2020-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deepak K. Ray & James S. Gerber & Graham K. MacDonald & Paul C. West, 2015. "Climate variation explains a third of global crop yield variability," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeetendra Prakash Aryal & Tek B. Sapkota & Ritika Khurana & Arun Khatri-Chhetri & Dil Bahadur Rahut & M. L. Jat, 2020. "Climate change and agriculture in South Asia: adaptation options in smallholder production systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5045-5075, August.
    2. Qiang Wang & Yuanfan Li & Rongrong Li, 2024. "Rethinking the environmental Kuznets curve hypothesis across 214 countries: the impacts of 12 economic, institutional, technological, resource, and social factors," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-19, December.
    3. Linnenluecke, Martina K. & Smith, Tom & McKnight, Brent, 2016. "Environmental finance: A research agenda for interdisciplinary finance research," Economic Modelling, Elsevier, vol. 59(C), pages 124-130.
    4. Shahzad, Muhammad Faisal & Abdulai, Awudu, 2020. "Adaptation to extreme weather conditions and farm performance in rural Pakistan," Agricultural Systems, Elsevier, vol. 180(C).
    5. Kamini Yadav & Hatim M. E. Geli, 2021. "Prediction of Crop Yield for New Mexico Based on Climate and Remote Sensing Data for the 1920–2019 Period," Land, MDPI, vol. 10(12), pages 1-27, December.
    6. Kukal, M.S. & Irmak, S., 2020. "Impact of irrigation on interannual variability in United States agricultural productivity," Agricultural Water Management, Elsevier, vol. 234(C).
    7. Ibrahim Sufiyan & J.I. Magaji & A.T.Ogah & K.D. Mohammed & K.K Geidam, 2020. "Effect Of Climatic Variables On Agricultural Productivity And Distribution In Plateau State Nigeria," Environment & Ecosystem Science (EES), Zibeline International Publishing, vol. 4(1), pages 5-9, February.
    8. Wang, Teng & Yi, Fujin & Liu, Huilin & Wu, Ximing & Zhong, Funing, 2021. "Can Agricultural Mechanization Have a Mitigation Effect on China's Yield Variability?," 2021 Conference, August 17-31, 2021, Virtual 315098, International Association of Agricultural Economists.
    9. Seijger, Chris & Chukalla, Abebe & Bremer, Karin & Borghuis, Gerlo & Christoforidou, Maria & Mul, Marloes & Hellegers, Petra & van Halsema, Gerardo, 2023. "Agronomic analysis of WaPOR applications: Confirming conservative biomass water productivity in inherent and climatological variance of WaPOR data outputs," Agricultural Systems, Elsevier, vol. 211(C).
    10. Han, Lubin & Leng, Guoyong, 2024. "Significant changes in global maize yield sensitivity to vapor pressure deficit during 1983–2010," Agricultural Water Management, Elsevier, vol. 305(C).
    11. Rogna, Marco & Schamel, Günter & Weissensteiner, Alex, 2019. "Choosing Between Hail Insurance and Anti-Hail Nets: A Simple Model and a Simulation among Apples Producers in South Tyrol," 2019: Trading for Good - Agricultural Trade in the Context of Climate Change Adaptation and Mitigation... Symposium, June 23-25, 2019, Seville, Spain 312593, International Agricultural Trade Research Consortium.
    12. Nazan An & Mustafa Tufan Turp & Murat Türkeş & Mehmet Levent Kurnaz, 2020. "Mid-Term Impact of Climate Change on Hazelnut Yield," Agriculture, MDPI, vol. 10(5), pages 1-20, May.
    13. Bekkers, Eddy & Brockmeier, Martina & Francois, Joseph & Yang, Fan, 2017. "Local Food Prices and International Price Transmission," World Development, Elsevier, vol. 96(C), pages 216-230.
    14. Takuto Sakamoto, 2016. "Mobility and Sustainability: A Computational Model of African Pastoralists," Journal of Management and Sustainability, Canadian Center of Science and Education, vol. 6(1), pages 59-75, March.
    15. Anna Florence & Andrew Revill & Stephen Hoad & Robert Rees & Mathew Williams, 2021. "The Effect of Antecedence on Empirical Model Forecasts of Crop Yield from Observations of Canopy Properties," Agriculture, MDPI, vol. 11(3), pages 1-16, March.
    16. Pinke, Zsolt & Kiss, Márton & Lövei, Gábor L., 2018. "Developing an integrated land use planning system on reclaimed wetlands of the Hungarian Plain using economic valuation of ecosystem services," Ecosystem Services, Elsevier, vol. 30(PB), pages 299-308.
    17. Florian Schierhorn & Max Hofmann & Taras Gagalyuk & Igor Ostapchuk & Daniel Müller, 2021. "Machine learning reveals complex effects of climatic means and weather extremes on wheat yields during different plant developmental stages," Climatic Change, Springer, vol. 169(3), pages 1-19, December.
    18. Ibrahim Sufiyan & K.D. Mohammed & Magaji J., 2020. "Assessment Of Crop Yield And Rainfall Simulation In Nasarawa Town Nasarawa State Nigeria," Journal Clean WAS (JCleanWAS), Zibeline International Publishing, vol. 4(2), pages 75-78, July.
    19. Nakelse, Tebila & Dalton, Timothy J. & Hendricks, Nathan P. & Hodjo, Manzamasso, 2018. "Are smallholder farmers better or worse off from an increase in the international price of cereals?," Food Policy, Elsevier, vol. 79(C), pages 213-223.
    20. Puyu Feng & Bin Wang & De Li Liu & Hongtao Xing & Fei Ji & Ian Macadam & Hongyan Ruan & Qiang Yu, 2018. "Impacts of rainfall extremes on wheat yield in semi-arid cropping systems in eastern Australia," Climatic Change, Springer, vol. 147(3), pages 555-569, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:66:y:2020:i:12:id:403-2020-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.