IDEAS home Printed from https://ideas.repec.org/a/bpj/jqsprt/v17y2021i2p91-105n6.html
   My bibliography  Save this article

How well do Elo-based ratings predict professional tennis matches?

Author

Listed:
  • Vaughan Williams Leighton
  • Liu Chunping
  • Dixon Lerato
  • Gerrard Hannah

    (Nottingham Business School, Nottingham Trent University, Nottingham, UK)

Abstract

This paper examines the performance of five different measures for forecasting men’s and women’s professional tennis matches. We use data derived from every match played at the 2018 and 2019 Wimbledon tennis championships, the 2019 French Open, the 2019 US Open, and the 2020 Australian Open. We look at the betting odds, the official tennis rankings, the standard Elo ratings, surface-specific Elo ratings, and weighted composites of these ratings, including and excluding the betting odds. The performance indicators used are prediction accuracy, calibration, model discrimination, Brier score, and expected return. We find that the betting odds perform relatively well across these tournaments, while standard Elo (especially for women’s tennis) and surface-adjusted Elo (especially for men’s tennis) also perform well on a range of indicators. For all but the hard-court surfaces, a forecasting model which incorporates the betting odds tends also to perform well on some indicators. We find that the official ranking system proved to be a relatively poor measure of likely performance compared to betting odds and Elo-related methods. Our results add weight to the case for a wider use of Elo-based approaches within sports forecasting, as well as arguably within the player rankings methodologies.

Suggested Citation

  • Vaughan Williams Leighton & Liu Chunping & Dixon Lerato & Gerrard Hannah, 2021. "How well do Elo-based ratings predict professional tennis matches?," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 17(2), pages 91-105, June.
  • Handle: RePEc:bpj:jqsprt:v:17:y:2021:i:2:p:91-105:n:6
    DOI: 10.1515/jqas-2019-0110
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jqas-2019-0110
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/jqas-2019-0110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Smith, A A, Jr, 1993. "Estimating Nonlinear Time-Series Models Using Simulated Vector Autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 63-84, Suppl. De.
    2. Ruth N. Bolton & Randall G. Chapman, 2008. "Searching For Positive Returns At The Track: A Multinomial Logit Model For Handicapping Horse Races," World Scientific Book Chapters, in: Donald B Hausch & Victor SY Lo & William T Ziemba (ed.), Efficiency Of Racetrack Betting Markets, chapter 17, pages 151-171, World Scientific Publishing Co. Pte. Ltd..
    3. Roger C. Vergin & Michael Scriabin, 1978. "Winning Strategies for Wagering on National Football League Games," Management Science, INFORMS, vol. 24(8), pages 809-818, April.
    4. Kovalchik, Stephanie & Reid, Machar, 2019. "A calibration method with dynamic updates for within-match forecasting of wins in tennis," International Journal of Forecasting, Elsevier, vol. 35(2), pages 756-766.
    5. Stekler, H.O. & Sendor, David & Verlander, Richard, 2010. "Issues in sports forecasting," International Journal of Forecasting, Elsevier, vol. 26(3), pages 606-621, July.
      • Herman O. Stekler & David Sendor & Richard Verlander, 2009. "Issues in Sports Forecasting," Working Papers 2009-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    6. Angelini, Giovanni & De Angelis, Luca, 2019. "Efficiency of online football betting markets," International Journal of Forecasting, Elsevier, vol. 35(2), pages 712-721.
    7. Snyder, Wayne W, 1978. "Horse Racing: Testing the Efficient Markets Model," Journal of Finance, American Finance Association, vol. 33(4), pages 1109-1118, September.
    8. J. James Reade & Carl Singleton & Leighton Vaughan Williams, 2020. "Betting markets for English Premier League results and scorelines: evaluating a forecasting model," Economics Discussion Papers em-dp2020-03, Department of Economics, University of Reading.
    9. Irons David J. & Buckley Stephen & Paulden Tim, 2014. "Developing an improved tennis ranking system," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 10(2), pages 1-10, June.
    10. I. Graham & H. Stott, 2008. "Predicting bookmaker odds and efficiency for UK football," Applied Economics, Taylor & Francis Journals, vol. 40(1), pages 99-109.
    11. Martin Spann & Bernd Skiera, 2009. "Sports forecasting: a comparison of the forecast accuracy of prediction markets, betting odds and tipsters," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(1), pages 55-72.
    12. Ryall, Richard & Bedford, Anthony, 2010. "An optimized ratings-based model for forecasting Australian Rules football," International Journal of Forecasting, Elsevier, vol. 26(3), pages 511-517, July.
    13. Easton, Stephen & Uylangco, Katherine, 2010. "Forecasting outcomes in tennis matches using within-match betting markets," International Journal of Forecasting, Elsevier, vol. 26(3), pages 564-575, July.
    14. Leitner, Christoph & Zeileis, Achim & Hornik, Kurt, 2010. "Forecasting sports tournaments by ratings of (prob)abilities: A comparison for the EUROÂ 2008," International Journal of Forecasting, Elsevier, vol. 26(3), pages 471-481, July.
    15. Vaughan Williams,Leighton (ed.), 2005. "Information Efficiency in Financial and Betting Markets," Cambridge Books, Cambridge University Press, number 9780521816038.
    16. Hvattum, Lars Magnus & Arntzen, Halvard, 2010. "Using ELO ratings for match result prediction in association football," International Journal of Forecasting, Elsevier, vol. 26(3), pages 460-470, July.
    17. Kovalchik Stephanie Ann, 2016. "Searching for the GOAT of tennis win prediction," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 12(3), pages 127-138, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philip Ramirez & J. James Reade & Carl Singleton, 2021. "Betting on a buzz, mispricing and inefficiency in online sportsbooks," Economics Discussion Papers em-dp2021-10, Department of Economics, University of Reading.
    2. Angelini, Giovanni & Candila, Vincenzo & De Angelis, Luca, 2022. "Weighted Elo rating for tennis match predictions," European Journal of Operational Research, Elsevier, vol. 297(1), pages 120-132.
    3. Stekler, H.O. & Sendor, David & Verlander, Richard, 2010. "Issues in sports forecasting," International Journal of Forecasting, Elsevier, vol. 26(3), pages 606-621, July.
      • Herman O. Stekler & David Sendor & Richard Verlander, 2009. "Issues in Sports Forecasting," Working Papers 2009-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    4. He, Xue-Zhong & Treich, Nicolas, 2017. "Prediction market prices under risk aversion and heterogeneous beliefs," Journal of Mathematical Economics, Elsevier, vol. 70(C), pages 105-114.
    5. Sung, Ming-Chien & McDonald, David C.J. & Johnson, Johnnie E.V. & Tai, Chung-Ching & Cheah, Eng-Tuck, 2019. "Improving prediction market forecasts by detecting and correcting possible over-reaction to price movements," European Journal of Operational Research, Elsevier, vol. 272(1), pages 389-405.
    6. Kovalchik, Stephanie & Reid, Machar, 2019. "A calibration method with dynamic updates for within-match forecasting of wins in tennis," International Journal of Forecasting, Elsevier, vol. 35(2), pages 756-766.
    7. Brown, Alasdair & Reade, J. James, 2019. "The wisdom of amateur crowds: Evidence from an online community of sports tipsters," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1073-1081.
    8. Roberto Gásquez & Vicente Royuela, 2016. "The Determinants of International Football Success: A Panel Data Analysis of the Elo Rating," Social Science Quarterly, Southwestern Social Science Association, vol. 97(2), pages 125-141, June.
    9. Lessmann, Stefan & Sung, Ming-Chien & Johnson, Johnnie E.V. & Ma, Tiejun, 2012. "A new methodology for generating and combining statistical forecasting models to enhance competitive event prediction," European Journal of Operational Research, Elsevier, vol. 218(1), pages 163-174.
    10. J. James Reade & Carl Singleton & Alasdair Brown, 2021. "Evaluating strange forecasts: The curious case of football match scorelines," Scottish Journal of Political Economy, Scottish Economic Society, vol. 68(2), pages 261-285, May.
    11. Johnnie Johnson & Alistair Bruce & Jiejun Yu, 2010. "The ordinal efficiency of betting markets: an exploded logit approach," Applied Economics, Taylor & Francis Journals, vol. 42(29), pages 3703-3709.
    12. S Lessmann & M-C Sung & J E V Johnson, 2011. "Towards a methodology for measuring the true degree of efficiency in a speculative market," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(12), pages 2120-2132, December.
    13. Angelini, Giovanni & De Angelis, Luca & Singleton, Carl, 2022. "Informational efficiency and behaviour within in-play prediction markets," International Journal of Forecasting, Elsevier, vol. 38(1), pages 282-299.
    14. Singleton, Carl & Reade, J. James & Brown, Alasdair, 2020. "Going with your gut: The (In)accuracy of forecast revisions in a football score prediction game," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 89(C).
    15. Philip W. S. Newall & Dominic Cortis, 2021. "Are Sports Bettors Biased toward Longshots, Favorites, or Both? A Literature Review," Risks, MDPI, vol. 9(1), pages 1-9, January.
    16. Constantinou Anthony Costa & Fenton Norman Elliott, 2012. "Solving the Problem of Inadequate Scoring Rules for Assessing Probabilistic Football Forecast Models," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(1), pages 1-14, March.
    17. Wunderlich, Fabian & Memmert, Daniel, 2020. "Are betting returns a useful measure of accuracy in (sports) forecasting?," International Journal of Forecasting, Elsevier, vol. 36(2), pages 713-722.
    18. L.F.M. Groot & J. Ferwerda, 2014. "Soccer jersey sponsors and the world cup," Working Papers 14-07, Utrecht School of Economics.
    19. Quitzau, Jörn & Vöpel, Henning, 2009. "Der Faktor Zufall im Fußball: Eine empirische Untersuchung für die Saison 2007/08," HWWI Research Papers 1-22, Hamburg Institute of International Economics (HWWI).
    20. Alasdair Brown & Dooruj Rambaccussing & J. James Reade & Giambattista Rossi, 2016. "Using Social Media to Identify Market Ine!ciencies: Evidence from Twitter and Betfair," Working Papers 2016-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:17:y:2021:i:2:p:91-105:n:6. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://www.degruyter.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.