IDEAS home Printed from https://ideas.repec.org/a/bla/worlde/v46y2023i9p2707-2731.html
   My bibliography  Save this article

Matrix completion of world trade: An analysis of interpretability through Shapley values

Author

Listed:
  • Giorgio Gnecco
  • Federico Nutarelli
  • Massimo Riccaboni

Abstract

Economic complexity and machine learning have recently become popular approaches for analysing international trade. However, for effective use of machine learning in relation to economic complexity and policymaking, it is important to understand what are the key features for predictions. In this framework, this article addresses the issue of the interpretability of results obtained with a machine learning technique—namely, matrix completion—when applied to economic complexity, specifically in predicting revealed comparative advantages (RCAs) of countries in different product categories. Shapley values are used to measure the role each country plays in predicting the RCAs of other countries. Countries relevant for prediction may differ from countries whose RCA values are similar to those of the country of interest when a standard similarity measure such as cosine similarity is used. We demonstrate the usefulness of our approach to identifying comparable countries by focussing our analysis on export diversification into complex goods of selected European countries.

Suggested Citation

  • Giorgio Gnecco & Federico Nutarelli & Massimo Riccaboni, 2023. "Matrix completion of world trade: An analysis of interpretability through Shapley values," The World Economy, Wiley Blackwell, vol. 46(9), pages 2707-2731, September.
  • Handle: RePEc:bla:worlde:v:46:y:2023:i:9:p:2707-2731
    DOI: 10.1111/twec.13457
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/twec.13457
    Download Restriction: no

    File URL: https://libkey.io/10.1111/twec.13457?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2021. "Matrix Completion Methods for Causal Panel Data Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1716-1730, October.
    2. Zhu, Zhen & Morrison, Greg & Puliga, Michelangelo & Chessa, Alessandro & Riccaboni, Massimo, 2018. "The similarity of global value chains: A network-based measure," Network Science, Cambridge University Press, vol. 6(4), pages 607-632, December.
    3. Hadas, Yuval & Gnecco, Giorgio & Sanguineti, Marcello, 2017. "An approach to transportation network analysis via transferable utility games," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 120-143.
    4. Carla Sciarra & Guido Chiarotti & Luca Ridolfi & Francesco Laio, 2020. "Reconciling contrasting views on economic complexity," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    5. Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
    6. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    7. de la Rica, Sara, 2009. "The Effect of the 2004 and 2007 EU Enlargement on the Spanish Labour Market," IZA Discussion Papers 4104, Institute of Labor Economics (IZA).
    8. Andrea Tacchella & Andrea Zaccaria & Marco Miccheli & Luciano Pietronero, 2021. "Relatedness in the Era of Machine Learning," Papers 2103.06017, arXiv.org.
    9. Kuźnar, Andżelika, 2016. "Poland’s Trade in Services with Germany – EU Membership Experience," Problems of World Agriculture / Problemy Rolnictwa Światowego, Warsaw University of Life Sciences, vol. 16(31), pages 1-15, December.
    10. Stefan BOJNEC & Imre FERTO, 2016. "Export competitiveness of the European Union in fruit and vegetable products in the global markets," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 62(7), pages 299-310.
    11. Christian Estmann & Bjørn Bo Sørensen & Benno Ndulu & John Rand, 2022. "Merchandise export diversification strategy for Tanzania: Promoting inclusive growth, economic complexity and structural change," The World Economy, Wiley Blackwell, vol. 45(8), pages 2649-2695, August.
    12. David W. K. Yeung & Leon A. Petrosyan & Yingxuan Zhang, 2021. "Trade with Technology Spillover: A Dynamic Network Game Analysis," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 23(01), pages 1-31, March.
    13. Peter Kannen, 2020. "Does foreign direct investment expand the capability set in the host economy? A sectoral analysis," The World Economy, Wiley Blackwell, vol. 43(2), pages 428-457, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yamin Ahmad & Adam Check & Ming Chien Lo, 2024. "Unit Roots in Macroeconomic Time Series: A Comparison of Classical, Bayesian and Machine Learning Approaches," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2139-2173, June.
    2. Lionel Fontagn'e & Francesca Micocci & Armando Rungi, 2024. "The heterogeneous impact of the EU-Canada agreement with causal machine learning," Papers 2407.07652, arXiv.org, revised Apr 2025.
    3. Lionel Fontagné & Francesca Micocci & Armando Rungi, 2025. "The heterogeneous impact of the EU-Canada agreement with causal machine learning," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-04913313, HAL.
    4. Gert Bijnens & Shyngys Karimov & Jozef Konings, 2023. "Does Automatic Wage Indexation Destroy Jobs? A Machine Learning Approach," De Economist, Springer, vol. 171(1), pages 85-117, March.
    5. Viviano, Davide & Bradic, Jelena, 2023. "Synthetic Learner: Model-free inference on treatments over time," Journal of Econometrics, Elsevier, vol. 234(2), pages 691-713.
    6. Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
    7. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Labib Shami & Teddy Lazebnik, 2024. "Implementing Machine Learning Methods in Estimating the Size of the Non-observed Economy," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1459-1476, April.
    9. Ay, Jean-Sauveur & Le Gallo, Julie, 2021. "The Signaling Values of Nested Wine Names," Working Papers 321851, American Association of Wine Economists.
    10. Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023. "Big data forecasting of South African inflation," Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
    11. Chen, Ruoyu & Jiang, Hanchen & Quintero, Luis E., 2023. "Measuring the value of rent stabilization and understanding its implications for racial inequality: Evidence from New York City," Regional Science and Urban Economics, Elsevier, vol. 103(C).
    12. Dang, Hai-Anh & Carletto, Calogero & Gourlay, Sydney & Abanokova, Kseniya, 2024. "Addressing Soil Quality Data Gaps with Imputation: Evidence from Ethiopia and Uganda," GLO Discussion Paper Series 1445, Global Labor Organization (GLO).
    13. Dangxing Chen & Luyao Zhang, 2023. "Monotonicity for AI ethics and society: An empirical study of the monotonic neural additive model in criminology, education, health care, and finance," Papers 2301.07060, arXiv.org.
    14. Ballestar, María Teresa & Mir, Miguel Cuerdo & Pedrera, Luis Miguel Doncel & Sainz, Jorge, 2024. "Effectiveness of tutoring at school: A machine learning evaluation," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    15. Daniel Levy & Tamir Mayer & Alon Raviv, 2020. "Academic Scholarship in Light of the 2008 Financial Crisis: Textual Analysis of NBER Working Papers," Working Papers hal-02488796, HAL.
    16. Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2022. "Urban economics in a historical perspective: Recovering data with machine learning," Regional Science and Urban Economics, Elsevier, vol. 94(C).
    17. Barzin,Samira & Avner,Paolo & Maruyama Rentschler,Jun Erik & O’Clery,Neave, 2022. "Where Are All the Jobs ? A Machine Learning Approach for High Resolution Urban Employment Prediction inDeveloping Countries," Policy Research Working Paper Series 9979, The World Bank.
    18. Arenas, Andreu & Calsamiglia, Caterina, 2022. "Gender Differences in High-Stakes Performance and College Admission Policies," IZA Discussion Papers 15550, Institute of Labor Economics (IZA).
    19. Tsang, Andrew, 2021. "Uncovering Heterogeneous Regional Impacts of Chinese Monetary Policy," MPRA Paper 110703, University Library of Munich, Germany.
    20. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:worlde:v:46:y:2023:i:9:p:2707-2731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0378-5920 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.