IDEAS home Printed from https://ideas.repec.org/a/bla/wireae/v7y2018i3ne286.html
   My bibliography  Save this article

Emerging technologies, markets and commercialization of solid‐electrolytic hydrogen production

Author

Listed:
  • Sukhvinder P.S. Badwal
  • Sarbjit Giddey
  • Christopher Munnings

Abstract

Around 60 million tons of hydrogen are generated globally each year, 96% of which is produced from fossil fuels. Very little hydrogen is used as energy media; instead, it is most commonly used in nonenergy‐related applications, such as the production of ammonia, fertilizer, methanol and other chemicals, the petrochemical industry, and the hydrogenation of products. However, there is a clear global shift in the use of hydrogen, which is now rapidly developing as a renewable fuel for both stationary and transport applications. Hydrogen can be transported in compressed form at high pressures, in liquid form at –253°C, or more conveniently converted to liquid fuels for easy transportation from locations high in renewable‐energy intensity to areas scarce in renewable resources. In the last 5 years there has been a significant advancement in the scale of solid‐electrolyte demonstrations with a number of megawatt (MW) class products under operation for onsite hydrogen generation, power to gas networks, and storage at multiple sites. This manuscript, building on our previous WIRES publication, discusses the commercialization status of renewable hydrogen‐generation technologies, along with advances in research and development linked to electrolytic hydrogen generation, use, and transportation in the form of liquid fuels such as ammonia, methanol, or dimethyl ether. This article is categorized under: Fuel Cells and Hydrogen > Science and Materials Fuel Cells and Hydrogen > Systems and Infrastructure

Suggested Citation

  • Sukhvinder P.S. Badwal & Sarbjit Giddey & Christopher Munnings, 2018. "Emerging technologies, markets and commercialization of solid‐electrolytic hydrogen production," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(3), May.
  • Handle: RePEc:bla:wireae:v:7:y:2018:i:3:n:e286
    DOI: 10.1002/wene.286
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wene.286
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wene.286?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Graves, Christopher & Ebbesen, Sune D. & Mogensen, Mogens & Lackner, Klaus S., 2011. "Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 1-23, January.
    2. Sukhvinder P.S. Badwal & Sarbjit Giddey & Christopher Munnings, 2013. "Hydrogen production via solid electrolytic routes," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(5), pages 473-487, September.
    3. Connolly, D. & Mathiesen, B.V. & Ridjan, I., 2014. "A comparison between renewable transport fuels that can supplement or replace biofuels in a 100% renewable energy system," Energy, Elsevier, vol. 73(C), pages 110-125.
    4. Gómez, Sergio Yesid & Hotza, Dachamir, 2016. "Current developments in reversible solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 155-174.
    5. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M. & Lau, Kwan Yiew, 2017. "Feasibility analysis of hybrid photovoltaic/battery/fuel cell energy system for an indigenous residence in East Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1332-1347.
    6. Badwal, S.P.S. & Giddey, S. & Kulkarni, A. & Goel, J. & Basu, S., 2015. "Direct ethanol fuel cells for transport and stationary applications – A comprehensive review," Applied Energy, Elsevier, vol. 145(C), pages 80-103.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ju, HyungKuk & Badwal, Sukhvinder & Giddey, Sarbjit, 2018. "A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production," Applied Energy, Elsevier, vol. 231(C), pages 502-533.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehran, Muhammad Taqi & Yu, Seong-Bin & Lee, Dong-Young & Hong, Jong-Eun & Lee, Seung-Bok & Park, Seok-Joo & Song, Rak-Hyun & Lim, Tak-Hyoung, 2018. "Production of syngas from H2O/CO2 by high-pressure coelectrolysis in tubular solid oxide cells," Applied Energy, Elsevier, vol. 212(C), pages 759-770.
    2. Ju, HyungKuk & Badwal, Sukhvinder & Giddey, Sarbjit, 2018. "A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production," Applied Energy, Elsevier, vol. 231(C), pages 502-533.
    3. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    4. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    5. Sveinbjörnsson, Dadi & Ben Amer-Allam, Sara & Hansen, Anders Bavnhøj & Algren, Loui & Pedersen, Allan Schrøder, 2017. "Energy supply modelling of a low-CO2 emitting energy system: Case study of a Danish municipality," Applied Energy, Elsevier, vol. 195(C), pages 922-941.
    6. Brynolf, Selma & Taljegard, Maria & Grahn, Maria & Hansson, Julia, 2018. "Electrofuels for the transport sector: A review of production costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1887-1905.
    7. Mikulčić, Hrvoje & Ridjan Skov, Iva & Dominković, Dominik Franjo & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Tan, Raymond & Duić, Neven & Hidayah Mohamad, Siti Nur & Wang, Xuebin, 2019. "Flexible Carbon Capture and Utilization technologies in future energy systems and the utilization pathways of captured CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    8. Stempien, Jan Pawel & Ni, Meng & Sun, Qiang & Chan, Siew Hwa, 2015. "Thermodynamic analysis of combined Solid Oxide Electrolyzer and Fischer–Tropsch processes," Energy, Elsevier, vol. 81(C), pages 682-690.
    9. Pérez-Trujillo, Juan Pedro & Elizalde-Blancas, Francisco & McPhail, Stephen J. & Della Pietra, Massimiliano & Bosio, Barbara, 2020. "Preliminary theoretical and experimental analysis of a Molten Carbonate Fuel Cell operating in reversible mode," Applied Energy, Elsevier, vol. 263(C).
    10. Li, Wenjia & Hao, Yong & Wang, Hongsheng & Liu, Hao & Sui, Jun, 2017. "Efficient and low-carbon heat and power cogeneration with photovoltaics and thermochemical storage," Applied Energy, Elsevier, vol. 206(C), pages 1523-1531.
    11. Hanfei Zhang & Ligang Wang & Jan Van herle & François Maréchal & Umberto Desideri, 2019. "Techno-Economic Optimization of CO 2 -to-Methanol with Solid-Oxide Electrolyzer," Energies, MDPI, vol. 12(19), pages 1-15, September.
    12. Razmi, Amir Reza & Hanifi, Amir Reza & Shahbakhti, Mahdi, 2023. "Design, thermodynamic, and economic analyses of a green hydrogen storage concept based on solid oxide electrolyzer/fuel cells and heliostat solar field," Renewable Energy, Elsevier, vol. 215(C).
    13. Hossam A. Gabbar & Muhammad R. Abdussami & Md. Ibrahim Adham, 2020. "Micro Nuclear Reactors: Potential Replacements for Diesel Gensets within Micro Energy Grids," Energies, MDPI, vol. 13(19), pages 1-38, October.
    14. Lorestani, A. & Ardehali, M.M., 2018. "Optimal integration of renewable energy sources for autonomous tri-generation combined cooling, heating and power system based on evolutionary particle swarm optimization algorithm," Energy, Elsevier, vol. 145(C), pages 839-855.
    15. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
    16. Alves, Luís & Pereira, Vítor & Lagarteira, Tiago & Mendes, Adélio, 2021. "Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    17. Attahiru, Yusuf Babangida & Aziz, Md. Maniruzzaman A. & Kassim, Khairul Anuar & Shahid, Shamsuddin & Wan Abu Bakar, Wan Azelee & NSashruddin, Thanwa Filza & Rahman, Farahiyah Abdul & Ahamed, Mohd Imra, 2019. "A review on green economy and development of green roads and highways using carbon neutral materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 600-613.
    18. Pellegrino, Sandro & Lanzini, Andrea & Leone, Pierluigi, 2017. "Greening the gas network – The need for modelling the distributed injection of alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 266-286.
    19. Santiago, Óscar & Navarro, Emilio & Raso, Miguel A. & Leo, Teresa J., 2016. "Review of implantable and external abiotically catalysed glucose fuel cells and the differences between their membranes and catalysts," Applied Energy, Elsevier, vol. 179(C), pages 497-522.
    20. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:7:y:2018:i:3:n:e286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.