IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v69y2015i4p483-509.html
   My bibliography  Save this article

Plug-in bandwidth selector for recursive kernel regression estimators defined by stochastic approximation method

Author

Listed:
  • Yousri Slaoui

Abstract

type="main" xml:id="stan12069-abs-0001"> In this paper, we propose an automatic selection of the bandwidth of the recursive kernel estimators of a regression function defined by the stochastic approximation algorithm. We showed that, using the selected bandwidth and the stepsize which minimize the mean weighted integrated squared error, the recursive estimator will be better than the non-recursive one for small sample setting in terms of estimation error and computational costs. We corroborated these theoretical results through simulation study and a real dataset.

Suggested Citation

  • Yousri Slaoui, 2015. "Plug-in bandwidth selector for recursive kernel regression estimators defined by stochastic approximation method," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(4), pages 483-509, November.
  • Handle: RePEc:bla:stanee:v:69:y:2015:i:4:p:483-509
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/stan.12069
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Delaigle, A. & Gijbels, I., 2004. "Practical bandwidth selection in deconvolution kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 249-267, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bouzebda, Salim & Slaoui, Yousri, 2022. "Nonparametric recursive method for moment generating function kernel-type estimators," Statistics & Probability Letters, Elsevier, vol. 184(C).
    2. Yousri Slaoui, 2021. "Data-driven Deconvolution Recursive Kernel Density Estimators Defined by Stochastic Approximation Method," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 312-352, February.
    3. Salim Bouzebda & Yousri Slaoui, 2023. "Nonparametric Recursive Estimation for Multivariate Derivative Functions by Stochastic Approximation Method," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 658-690, February.
    4. Slaoui Yousri & Khardani Salah, 2020. "Nonparametric relative recursive regression," Dependence Modeling, De Gruyter, vol. 8(1), pages 221-238, January.
    5. Yousri Slaoui, 2018. "Data-Driven Bandwidth Selection for Recursive Kernel Density Estimators Under Double Truncation," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 341-368, November.
    6. Slaoui Yousri & Khardani Salah, 2020. "Nonparametric relative recursive regression," Dependence Modeling, De Gruyter, vol. 8(1), pages 221-238, January.
    7. Bouzebda, Salim & Slaoui, Yousri, 2019. "Large and moderate deviation principles for recursive kernel estimators of a regression function for spatial data defined by stochastic approximation method," Statistics & Probability Letters, Elsevier, vol. 151(C), pages 17-28.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuosmanen, Timo & Johnson, Andrew, 2017. "Modeling joint production of multiple outputs in StoNED: Directional distance function approach," European Journal of Operational Research, Elsevier, vol. 262(2), pages 792-801.
    2. Ali Al-Sharadqah & Majid Mojirsheibani & William Pouliot, 2020. "On the performance of weighted bootstrapped kernel deconvolution density estimators," Statistical Papers, Springer, vol. 61(4), pages 1773-1798, August.
    3. Crucinio, Francesca R. & De Bortoli, Valentin & Doucet, Arnaud & Johansen, Adam M., 2024. "Solving a class of Fredholm integral equations of the first kind via Wasserstein gradient flows," Stochastic Processes and their Applications, Elsevier, vol. 173(C).
    4. Parmeter, Christopher F., 2008. "The effect of measurement error on the estimated shape of the world distribution of income," Economics Letters, Elsevier, vol. 100(3), pages 373-376, September.
    5. Kato, Kengo & Sasaki, Yuya, 2018. "Uniform confidence bands in deconvolution with unknown error distribution," Journal of Econometrics, Elsevier, vol. 207(1), pages 129-161.
    6. Salim Bouzebda & Yousri Slaoui, 2023. "Nonparametric Recursive Estimation for Multivariate Derivative Functions by Stochastic Approximation Method," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 658-690, February.
    7. Peter Hall & Tapabrata Maiti, 2008. "Non‐parametric inference for clustered binary and count data when only summary information is available," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 725-738, September.
    8. Hao Dong & Taisuke Otsu & Luke Taylor, 2023. "Bandwidth selection for nonparametric regression with errors-in-variables," Econometric Reviews, Taylor & Francis Journals, vol. 42(4), pages 393-419, April.
    9. Yousri Slaoui, 2021. "Data-driven Deconvolution Recursive Kernel Density Estimators Defined by Stochastic Approximation Method," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 312-352, February.
    10. Otsu, Taisuke & Taylor, Luke, 2021. "Specification Testing For Errors-In-Variables Models," Econometric Theory, Cambridge University Press, vol. 37(4), pages 747-768, August.
    11. Xiaodong Gong & Jiti Gao, 2015. "Nonparametric Kernel Estimation of the Impact of Tax Policy on the Demand for Private Health Insurance in Australia," Monash Econometrics and Business Statistics Working Papers 6/15, Monash University, Department of Econometrics and Business Statistics.
    12. Yousri Slaoui, 2021. "Recursive non-parametric kernel classification rule estimation for independent functional data," Computational Statistics, Springer, vol. 36(1), pages 79-112, March.
    13. Kengo Kato & Yuya Sasaki & Takuya Ura, 2021. "Robust inference in deconvolution," Quantitative Economics, Econometric Society, vol. 12(1), pages 109-142, January.
    14. Joel L. Horowitz, 2013. "Ill-posed inverse problems in economics," CeMMAP working papers CWP37/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    15. A. Delaigle & I. Gijbels, 2004. "Bootstrap bandwidth selection in kernel density estimation from a contaminated sample," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(1), pages 19-47, March.
    16. Slaoui Yousri, 2019. "Optimal bandwidth selection for recursive Gumbel kernel density estimators," Dependence Modeling, De Gruyter, vol. 7(1), pages 375-393, January.
    17. Pei Geng & Huyen Nguyen, 2024. "Parameter estimation for Logistic errors-in-variables regression under case–control studies," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(2), pages 661-684, April.
    18. Dong, Hao & Otsu, Taisuke & Taylor, Luke, 2021. "Average Derivative Estimation Under Measurement Error," Econometric Theory, Cambridge University Press, vol. 37(5), pages 1004-1033, October.
    19. Zu, Yang, 2015. "Nonparametric specification tests for stochastic volatility models based on volatility density," Journal of Econometrics, Elsevier, vol. 187(1), pages 323-344.
    20. Haoze Hou & Wei Huang & Zheng Zhang, 2025. "Non-parametric Quantile Regression and Uniform Inference with Unknown Error Distribution," Papers 2504.01761, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:69:y:2015:i:4:p:483-509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.