IDEAS home Printed from
   My bibliography  Save this article

The Eigenfunction Expansion Method In Multi‐Factor Quadratic Term Structure Models


  • Nina Boyarchenko
  • Sergei Levendorskiǐ


We propose the eigenfunction expansion method for pricing options in quadratic term structure models. The eigenvalues, eigenfunctions, and adjoint functions are calculated using elements of the representation theory of Lie algebras not only in the self‐adjoint case, but in non‐self‐adjoint case as well; the eigenfunctions and adjoint functions are expressed in terms of Hermite polynomials. We demonstrate that the method is efficient for pricing caps, floors, and swaptions, if time to maturity is 1 year or more. We also consider subordination of the same class of models, and show that in the framework of the eigenfunction expansion approach, the subordinated models are (almost) as simple as pure Gaussian models. We study the dependence of Black implied volatilities and option prices on the type of non‐Gaussian innovations.

Suggested Citation

  • Nina Boyarchenko & Sergei Levendorskiǐ, 2007. "The Eigenfunction Expansion Method In Multi‐Factor Quadratic Term Structure Models," Mathematical Finance, Wiley Blackwell, vol. 17(4), pages 503-539, October.
  • Handle: RePEc:bla:mathfi:v:17:y:2007:i:4:p:503-539
    DOI: 10.1111/j.1467-9965.2007.00314.x

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Svetlana I Boyarchenko & Sergei Z Levendorskii, 2002. "Non-Gaussian Merton-Black-Scholes Theory," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 4955.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Gongqiu Zhang & Lingfei Li, 2019. "Analysis of Markov Chain Approximation for Option Pricing and Hedging: Grid Design and Convergence Behavior," Operations Research, INFORMS, vol. 67(2), pages 407-427, March.
    2. Jing Li & Lingfei Li & Rafael Mendoza-Arriaga, 2016. "Additive subordination and its applications in finance," Finance and Stochastics, Springer, vol. 20(3), pages 589-634, July.
    3. Lars Peter Hansen & José A. Scheinkman, 2009. "Long-Term Risk: An Operator Approach," Econometrica, Econometric Society, vol. 77(1), pages 177-234, January.
    4. Dongjae Lim & Lingfei Li & Vadim Linetsky, 2012. "Evaluating Callable and Putable Bonds: An Eigenfunction Expansion Approach," Papers 1206.5046,
    5. Khalid, Muhammad Zeeshan & Zubair, Muhammad & Ali, Majid, 2019. "An analytical method for the solution of two phase Stefan problem in cylindrical geometry," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 295-308.
    6. Likuan Qin & Vadim Linetsky, 2016. "Positive Eigenfunctions of Markovian Pricing Operators: Hansen-Scheinkman Factorization, Ross Recovery, and Long-Term Pricing," Operations Research, INFORMS, vol. 64(1), pages 99-117, February.
    7. Likuan Qin & Vadim Linetsky, 2014. "Positive Eigenfunctions of Markovian Pricing Operators: Hansen-Scheinkman Factorization, Ross Recovery and Long-Term Pricing," Papers 1411.3075,, revised Sep 2015.
    8. Rafael Mendoza-Arriaga & Vadim Linetsky, 2014. "Time-changed CIR default intensities with two-sided mean-reverting jumps," Papers 1403.5402,
    9. Lingfei Li & Vadim Linetsky, 2015. "Discretely monitored first passage problems and barrier options: an eigenfunction expansion approach," Finance and Stochastics, Springer, vol. 19(4), pages 941-977, October.
    10. Lingfei Li & Vadim Linetsky, 2013. "Optimal Stopping and Early Exercise: An Eigenfunction Expansion Approach," Operations Research, INFORMS, vol. 61(3), pages 625-643, June.
    11. Li, Jing & Li, Lingfei & Zhang, Gongqiu, 2017. "Pure jump models for pricing and hedging VIX derivatives," Journal of Economic Dynamics and Control, Elsevier, vol. 74(C), pages 28-55.
    12. Cody Hyndman & Xinghua Zhou, 2014. "Explicit solutions of quadratic FBSDEs arising from quadratic term structure models," Papers 1410.1220,, revised Dec 2014.
    13. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2019. "Gauge transformations in the dual space, and pricing and estimation in the long run in affine jump-diffusion models," Papers 1912.06948,, revised Dec 2019.
    14. Lingfei Li & Vadim Linetsky, 2012. "Time-Changed Ornstein-Uhlenbeck Processes And Their Applications In Commodity Derivative Models," Papers 1204.3679,
    15. Lim, Dongjae & Li, Lingfei & Linetsky, Vadim, 2012. "Evaluating callable and putable bonds: An eigenfunction expansion approach," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1888-1908.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:17:y:2007:i:4:p:503-539. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.