IDEAS home Printed from
   My bibliography  Save this article

Error bounds and asymptotic expansions for toeplitz product functionals of unbounded spectra


  • Offer Lieberman
  • Peter C. B. Phillips


This paper establishes error orders for integral limit approximations to traces of powers (to the pth order) of products of Toeplitz matrices. Such products arise frequently in the analysis of stationary time series and in the development of asymptotic expansions. The elements of the matrices are Fourier transforms of functions which we allow to be bounded, unbounded, or even to vanish on [ - π, π], thereby including important cases such as the spectral functions of fractional processes. Error rates are also given in the case in which the matrix product involves inverse matrices. The rates are sharp up to an arbitrarily small ϵ > 0. The results improve on the o(1) rates obtained in earlier work for analogous products. For the p = 1 case, an explicit second-order asymptotic expansion is found for a quadratic functional of the autocovariance sequences of stationary long-memory time series. The order of magnitude of the second term in this expansion is shown to depend on the long-memory parameters. It is demonstrated that the pole in the first-order approximation is removed by the second-order term, which provides a substantially improved approximation to the original functional. Copyright 2004 Blackwell Publishing Ltd.

Suggested Citation

  • Offer Lieberman & Peter C. B. Phillips, 2004. "Error bounds and asymptotic expansions for toeplitz product functionals of unbounded spectra," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(5), pages 733-753, September.
  • Handle: RePEc:bla:jtsera:v:25:y:2004:i:5:p:733-753

    Download full text from publisher

    File URL:
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Ioannis Kasparis & Peter C. B. Phillips & Tassos Magdalinos, 2014. "Nonlinearity Induced Weak Instrumentation," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 676-712, August.
    2. Ginovyan, Mamikon S. & Sahakyan, Artur A., 2013. "On the trace approximations of products of Toeplitz matrices," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 753-760.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:25:y:2004:i:5:p:733-753. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.