IDEAS home Printed from https://ideas.repec.org/a/bla/jrinsu/v81y2014i2p303-334.html
   My bibliography  Save this article

Scenario Analysis in the Measurement of Operational Risk Capital: A Change of Measure Approach

Author

Listed:
  • Kabir K. Dutta
  • David F. Babbel

Abstract

type="main" xml:lang="en"> At large financial institutions, operational risk is gaining the same importance as market and credit risk in the capital calculation. Although scenario analysis is an important tool for financial risk measurement, its use in the measurement of operational risk capital has been arbitrary and often inaccurate. We propose a method that combines scenario analysis with historical loss data. Using the Change of Measure approach, we evaluate the impact of each scenario on the total estimate of operational risk capital. The method can be used in stress-testing, what-if assessment for scenario analysis, and Loss Given Default estimates used in credit evaluations.

Suggested Citation

  • Kabir K. Dutta & David F. Babbel, 2014. "Scenario Analysis in the Measurement of Operational Risk Capital: A Change of Measure Approach," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 81(2), pages 303-334, June.
  • Handle: RePEc:bla:jrinsu:v:81:y:2014:i:2:p:303-334
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jackwerth, Jens Carsten & Rubinstein, Mark, 1996. "Recovering Probability Distributions from Option Prices," Journal of Finance, American Finance Association, vol. 51(5), pages 1611-1632, December.
    2. MacMinn Richard D., 2005. "On Corporate Risk Management and Insurance," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 1(1), pages 1-24, June.
    3. Richard D. MacMinn, 2005. "Corporate Risk Management," World Scientific Book Chapters, in: The Fisher Model And Financial Markets, chapter 9, pages 84-99, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michal Vyskoèil, 2020. "Scenario Analysis Approach for Operational Risk in Insurance Companies," ACTA VSFS, University of Finance and Administration, vol. 14(2), pages 153-165.
    2. Martin Eling & Ruo Jia, 2017. "Recent Research Developments Affecting Nonlife Insurance—The CAS Risk Premium Project 2014 Update," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 20(1), pages 63-77, March.
    3. Lu Wei & Jianping Li & Xiaoqian Zhu, 2018. "Operational Loss Data Collection: A Literature Review," Annals of Data Science, Springer, vol. 5(3), pages 313-337, September.
    4. Sovan Mitra, 2013. "Scenario Generation For Operational Risk," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(3), pages 163-187, July.
    5. Zewei Liu & Ji-Kang Chen, 2024. "Financial Resilience in China: Conceptual Framework, Risk and Protective Factors, and Empirical Evidence," Journal of Family and Economic Issues, Springer, vol. 45(4), pages 852-875, December.
    6. Christian Biener & Martin Eling & Shailee Pradhan, 2015. "Recent Research Developments Affecting Nonlife Insurance—The CAS Risk Premium Project 2013 Update," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 18(1), pages 129-141, March.
    7. Georges Dionne & Samir Saissi Hassani, . "Hidden Markov regimes in operational loss data: application to the recent financial crisis," Journal of Operational Risk, Journal of Operational Risk.
    8. Olajide Solomon Fadun & Diekolola Oye, 2020. "Impacts of Operational Risk Management on Financial Performance:A Case of Commercial Banks in Nigeria," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 9(1), pages 22-35, January.
    9. Khan, Umair & Khalid, Umair & Farooq, Fatima, 2021. "Endogeneity Quagmire Empirical Evidence from Telecommunication Industry of Pakistan," Journal of Accounting and Finance in Emerging Economies, CSRC Publishing, Center for Sustainability Research and Consultancy Pakistan, vol. 7(4), pages 955-967, December.
    10. Babbel, David F., 2010. "A Note on Scenario Analysis in the Measurement of Operational Risk Capital: A Change of Measure Approach," Working Papers 10-26, University of Pennsylvania, Wharton School, Weiss Center.
    11. Georges Dionne & Amir Saissi Hassani, 2015. "Endogenous Hidden Markov Regimes in Operational Loss Data: Application to the Recent Financial Crisis," Cahiers de recherche 1516, CIRPEE.
    12. Bakhodir Ergashev, 2012. "A Theoretical Framework for Incorporating Scenarios into Operational Risk Modeling," Journal of Financial Services Research, Springer;Western Finance Association, vol. 41(3), pages 145-161, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    2. João Nunes, 2011. "American options and callable bonds under stochastic interest rates and endogenous bankruptcy," Review of Derivatives Research, Springer, vol. 14(3), pages 283-332, October.
    3. Semih Yon & Cafer Erhan Bozdag, 2014. "Test of Log-Normal Process with Importance Sampling for Options Pricing," Proceedings of Economics and Finance Conferences 0401571, International Institute of Social and Economic Sciences.
    4. Monteiro, Ana Margarida & Tutuncu, Reha H. & Vicente, Luis N., 2008. "Recovering risk-neutral probability density functions from options prices using cubic splines and ensuring nonnegativity," European Journal of Operational Research, Elsevier, vol. 187(2), pages 525-542, June.
    5. Seiji Harikae & James S. Dyer & Tianyang Wang, 2021. "Valuing Real Options in the Volatile Real World," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 171-189, January.
    6. Wael Bahsoun & Pawel Góra & Silvia Mayoral & Manuel Morales, 2006. "Random Dynamics and Finance: Constructing Implied Binomial Trees from a Predetermined Stationary Den," Faculty Working Papers 13/06, School of Economics and Business Administration, University of Navarra.
    7. David M. Frankel, 2008. "Adaptive Expectations And Stock Market Crashes," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 49(2), pages 595-619, May.
    8. Lambrinoudakis, Costas & Skiadopoulos, George & Gkionis, Konstantinos, 2019. "Capital structure and financial flexibility: Expectations of future shocks," Journal of Banking & Finance, Elsevier, vol. 104(C), pages 1-18.
    9. Jarno Talponen, 2013. "Matching distributions: Asset pricing with density shape correction," Papers 1312.4227, arXiv.org, revised Mar 2018.
    10. Szakmary, Andrew & Ors, Evren & Kyoung Kim, Jin & Davidson, Wallace III, 2003. "The predictive power of implied volatility: Evidence from 35 futures markets," Journal of Banking & Finance, Elsevier, vol. 27(11), pages 2151-2175, November.
    11. Hardeep Singh Mundi, 2023. "Risk neutral variances to compute expected returns using data from S&P BSE 100 firms—a replication study," Management Review Quarterly, Springer, vol. 73(1), pages 215-230, February.
    12. Tai‐Yong Roh & Alireza Tourani‐Rad & Yahua Xu & Yang Zhao, 2021. "Volatility‐of‐volatility risk in the crude oil market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(2), pages 245-265, February.
    13. Chen, Ren-Raw & Hsieh, Pei-lin & Huang, Jeffrey, 2018. "Crash risk and risk neutral densities," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 162-189.
    14. Andrew Ang & Robert J. Hodrick & Yuhang Xing & Xiaoyan Zhang, 2006. "The Cross‐Section of Volatility and Expected Returns," Journal of Finance, American Finance Association, vol. 61(1), pages 259-299, February.
    15. Balbás, Alejandro & Downarowicz, Anna & Gil-Bazo, Javier, 2005. "Market imperfections, discount factors and stochastic dominance: an empirical analysis with oil-linked derivatives," DEE - Working Papers. Business Economics. WB wb055013, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    16. Detlefsen, Kai & Härdle, Wolfgang Karl & Moro, Rouslan A., 2007. "Empirical pricing kernels and investor preferences," SFB 649 Discussion Papers 2007-017, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    17. Muendler, Marc-Andreas, 2008. "Risk-neutral investors do not acquire information," Finance Research Letters, Elsevier, vol. 5(3), pages 156-161, September.
    18. Robert R Bliss & Nikolaos Panigirtzoglou, 2000. "Testing the stability of implied probability density functions," Bank of England working papers 114, Bank of England.
    19. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    20. Shi-jie Jiang & Mujun Lei & Cheng-Huang Chung, 2018. "An Improvement of Gain-Loss Price Bounds on Options Based on Binomial Tree and Market-Implied Risk-Neutral Distribution," Sustainability, MDPI, vol. 10(6), pages 1-17, June.

    More about this item

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G20 - Financial Economics - - Financial Institutions and Services - - - General
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jrinsu:v:81:y:2014:i:2:p:303-334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/ariaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.