IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v59y2010i1p19-34.html
   My bibliography  Save this article

A Bayesian hierarchical mixture model for platelet-derived growth factor receptor phosphorylation to improve estimation of progression-free survival in prostate cancer

Author

Listed:
  • Satoshi Morita
  • Peter F. Thall
  • B. Nebiyou Bekele
  • Paul Mathew

Abstract

Advances in understanding the biological underpinnings of many cancers have led increasingly to the use of molecularly targeted anticancer therapies. Because the platelet-derived growth factor receptor (PDGFR) has been implicated in the progression of prostate cancer bone metastases, it is of great interest to examine possible relationships between PDGFR inhibition and therapeutic outcomes. We analyse the association between change in activated PDGFR (phosphorylated PDGFR) and progression-free survival time based on large within-patient samples of cell-specific phosphorylated PDGFR values taken before and after treatment from each of 88 prostate cancer patients. To utilize these paired samples as covariate data in a regression model for progression-free survival time, and be cause the phosphorylated PDGFR distributions are bimodal, we first employ a Bayesian hierarchical mixture model to obtain a deconvolution of the pretreatment and post-treatment within-patient phosphorylated PDGFR distributions. We evaluate fits of the mixture model and a non-mixture model that ignores the bimodality by using a supnorm metric to compare the empirical distribution of each phosphorylated PDGFR data set with the corresponding fitted distribution under each model. Our results show that first using the mixture model to account for the bimodality of the within-patient phosphorylated PDGFR distributions, and then using the posterior within-patient component mean changes in phosphorylated PDGFR so obtained as covariates in the regression model for progression-free survival time, provides an improved estimation. Copyright (c) 2010 Royal Statistical Society.

Suggested Citation

  • Satoshi Morita & Peter F. Thall & B. Nebiyou Bekele & Paul Mathew, 2010. "A Bayesian hierarchical mixture model for platelet-derived growth factor receptor phosphorylation to improve estimation of progression-free survival in prostate cancer," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(1), pages 19-34.
  • Handle: RePEc:bla:jorssc:v:59:y:2010:i:1:p:19-34
    as

    Download full text from publisher

    File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-9876.2009.00680.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika van der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639.
    2. Samuel M. Mwalili & Emmanuel Lesaffre & Dominique Declerck, 2005. "A Bayesian ordinal logistic regression model to correct for interobserver measurement error in a geographical oral health study," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 77-93.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rebecca Graziani & Michele Guindani & Peter F. Thall, 2015. "Bayesian nonparametric estimation of targeted agent effects on biomarker change to predict clinical outcome," Biometrics, The International Biometric Society, vol. 71(1), pages 188-197, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:59:y:2010:i:1:p:19-34. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/rssssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.