IDEAS home Printed from
   My bibliography  Save this article

Fourier analysis of irregularly spaced data on "R"-super-"d"


  • Yasumasa Matsuda
  • Yoshihiro Yajima


The purpose of the paper is to propose a frequency domain approach for irregularly spaced data on "R"-super-"d". We extend the original definition of a periodogram for time series to that for irregularly spaced data and define non-parametric and parametric spectral density estimators in a way that is similar to the classical approach. Introduction of the mixed asymptotics, which are one of the asymptotics for irregularly spaced data, makes it possible to provide asymptotic theories to the spectral estimators. The asymptotic result for the parametric estimator is regarded as a natural extension of the classical result for regularly spaced data to that for irregularly spaced data. Empirical studies are also included to illustrate the frequency domain approach in comparisons with the existing spatial and frequency domain approaches. Copyright (c) 2009 Royal Statistical Society.

Suggested Citation

  • Yasumasa Matsuda & Yoshihiro Yajima, 2009. "Fourier analysis of irregularly spaced data on "R"-super-"d"," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 191-217.
  • Handle: RePEc:bla:jorssb:v:71:y:2009:i:1:p:191-217

    Download full text from publisher

    File URL:
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Engle, Robert F, 1974. "Band Spectrum Regression," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 15(1), pages 1-11, February.
    2. Michael L. Stein & Zhiyi Chi & Leah J. Welty, 2004. "Approximating likelihoods for large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 275-296.
    3. Fuentes, Montserrat, 2007. "Approximate Likelihood for Large Irregularly Spaced Spatial Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 321-331, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Delgado, Miguel A. & Robinson, Peter M., 2013. "Non-nested testing of spatial correlation," LSE Research Online Documents on Economics 58169, London School of Economics and Political Science, LSE Library.
    2. Delgado, Miguel A. & Robinson, Peter M., 2015. "Non-nested testing of spatial correlation," Journal of Econometrics, Elsevier, vol. 187(1), pages 385-401.
    3. Delgado, Miguel A. & Robinson, Peter, 2015. "Non-nested testing of spatial correlation," LSE Research Online Documents on Economics 61433, London School of Economics and Political Science, LSE Library.
    4. Gupta, A, 2015. "Autoregressive Spatial Spectral Estimates," Economics Discussion Papers 14458, University of Essex, Department of Economics.
    5. repec:eee:econom:v:203:y:2018:i:1:p:80-95 is not listed on IDEAS
    6. Miguel A. Delgado & Peter M Robinson, 2013. "Non-Nested Testing of Spatial Correlation," STICERD - Econometrics Paper Series 568, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    7. repec:bla:jorssb:v:79:y:2017:i:1:p:95-123 is not listed on IDEAS
    8. Sam Efromovich, 2014. "Efficient Non-Parametric Estimation Of The Spectral Density In The Presence Of Missing Observations," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(5), pages 407-427, August.
    9. Yasumasa Matsuda, 2013. "Generalized Whittle Estimate For Nonstationary Spatial Data," TERG Discussion Papers 305, Graduate School of Economics and Management, Tohoku University.
    10. Giovanna Jona Lasinio & Gianluca Mastrantonio & Alessio Pollice, 2013. "Discussing the “big n problem”," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(1), pages 97-112, March.
    11. repec:cep:stiecm:/2013/568 is not listed on IDEAS
    12. repec:bla:jtsera:v:38:y:2017:i:2:p:326-351 is not listed on IDEAS

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:71:y:2009:i:1:p:191-217. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.