IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v185y2022is1ps112-s130.html
   My bibliography  Save this article

Estimation of reproduction numbers in real time: Conceptual and statistical challenges

Author

Listed:
  • Lorenzo Pellis
  • Paul J. Birrell
  • Joshua Blake
  • Christopher E. Overton
  • Francesca Scarabel
  • Helena B. Stage
  • Ellen Brooks‐Pollock
  • Leon Danon
  • Ian Hall
  • Thomas A. House
  • Matt J. Keeling
  • Jonathan M. Read
  • JUNIPER Consortium
  • Daniela De Angelis

Abstract

The reproduction number R$$ R $$ has been a central metric of the COVID‐19 pandemic response, published weekly by the UK government and regularly reported in the media. Here, we provide a formal definition and discuss the advantages and most common misconceptions around this quantity. We consider the intuition behind different formulations of R$$ R $$, the complexities in its estimation (including the unavoidable lags involved), and its value compared to other indicators (e.g. the growth rate) that can be directly observed from aggregate surveillance data and react more promptly to changes in epidemic trend. As models become more sophisticated, with age and/or spatial structure, formulating R$$ R $$ becomes increasingly complicated and inevitably model‐dependent. We present some models currently used in the UK pandemic response as examples. Ultimately, limitations in the available data streams, data quality and time constraints force pragmatic choices to be made on a quantity that is an average across time, space, social structure and settings. Effectively communicating these challenges is important but often difficult in an emergency.

Suggested Citation

  • Lorenzo Pellis & Paul J. Birrell & Joshua Blake & Christopher E. Overton & Francesca Scarabel & Helena B. Stage & Ellen Brooks‐Pollock & Leon Danon & Ian Hall & Thomas A. House & Matt J. Keeling & Jon, 2022. "Estimation of reproduction numbers in real time: Conceptual and statistical challenges," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 112-130, November.
  • Handle: RePEc:bla:jorssa:v:185:y:2022:i:s1:p:s112-s130
    DOI: 10.1111/rssa.12955
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12955
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12955?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joël Mossong & Niel Hens & Mark Jit & Philippe Beutels & Kari Auranen & Rafael Mikolajczyk & Marco Massari & Stefania Salmaso & Gianpaolo Scalia Tomba & Jacco Wallinga & Janneke Heijne & Malgorzata Sa, 2008. "Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases," PLOS Medicine, Public Library of Science, vol. 5(3), pages 1-1, March.
    2. Helen J Wearing & Pejman Rohani & Matt J Keeling, 2005. "Appropriate Models for the Management of Infectious Diseases," PLOS Medicine, Public Library of Science, vol. 2(7), pages 1-1, July.
    3. Katelyn M Gostic & Lauren McGough & Edward B Baskerville & Sam Abbott & Keya Joshi & Christine Tedijanto & Rebecca Kahn & Rene Niehus & James A Hay & Pablo M De Salazar & Joel Hellewell & Sophie Meaki, 2020. "Practical considerations for measuring the effective reproductive number, Rt," PLOS Computational Biology, Public Library of Science, vol. 16(12), pages 1-21, December.
    4. Kris V. Parag & Robin N. Thompson & Christl A. Donnelly, 2022. "Are epidemic growth rates more informative than reproduction numbers?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 5-15, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sylvia Richardson, 2022. "Statistics in times of increasing uncertainty," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1471-1496, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyukpyo Hong & Eunjin Eom & Hyojung Lee & Sunhwa Choi & Boseung Choi & Jae Kyoung Kim, 2024. "Overcoming bias in estimating epidemiological parameters with realistic history-dependent disease spread dynamics," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Hornstein Andreas, 2022. "Quarantine, Contact Tracing, and Testing: Implications of an Augmented SEIR Model," The B.E. Journal of Macroeconomics, De Gruyter, vol. 22(1), pages 53-88, January.
    3. Michael A Johansson & Neysarí Arana-Vizcarrondo & Brad J Biggerstaff & J Erin Staples & Nancy Gallagher & Nina Marano, 2011. "On the Treatment of Airline Travelers in Mathematical Models," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-7, July.
    4. Nicholas P. Jewell & Joseph A. Lewnard, 2022. "On the use of the reproduction number for SARS‐CoV‐2: Estimation, misinterpretations and relationships with other ecological measures," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 16-27, November.
    5. Ichino, Andrea & Favero, Carlo A. & Rustichini, Aldo, 2020. "Restarting the economy while saving lives under Covid-19," CEPR Discussion Papers 14664, C.E.P.R. Discussion Papers.
    6. Marina Antillón & Xiao Li & Lander Willem & Joke Bilcke & RESCEU investigators & Mark Jit & Philippe Beutels, 2023. "The age profile of respiratory syncytial virus burden in preschool children of low- and middle-income countries: A semi-parametric, meta-regression approach," PLOS Medicine, Public Library of Science, vol. 20(7), pages 1-25, July.
    7. Ori Davidov & Tamás Rudas, 2024. "On the use of historical estimates," Statistical Papers, Springer, vol. 65(1), pages 203-236, February.
    8. M. Hashem Pesaran & Cynthia Fan Yang, 2022. "Matching theory and evidence on Covid‐19 using a stochastic network SIR model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1204-1229, September.
    9. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    10. Aldo Carranza & Marcel Goic & Eduardo Lara & Marcelo Olivares & Gabriel Y. Weintraub & Julio Covarrubia & Cristian Escobedo & Natalia Jara & Leonardo J. Basso, 2022. "The Social Divide of Social Distancing: Shelter-in-Place Behavior in Santiago During the Covid-19 Pandemic," Management Science, INFORMS, vol. 68(3), pages 2016-2027, March.
    11. Houštecká, Anna & Koh, Dongya & Santaeulàlia-Llopis, Raül, 2021. "Contagion at work: Occupations, industries and human contact," Journal of Public Economics, Elsevier, vol. 200(C).
    12. repec:plo:pone00:0045113 is not listed on IDEAS
    13. Kuchler, Theresa & Russel, Dominic & Stroebel, Johannes, 2022. "JUE Insight: The geographic spread of COVID-19 correlates with the structure of social networks as measured by Facebook," Journal of Urban Economics, Elsevier, vol. 127(C).
    14. Lahrouz, A. & El Mahjour, H. & Settati, A. & Bernoussi, A., 2018. "Dynamics and optimal control of a non-linear epidemic model with relapse and cure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 299-317.
    15. Cristini, Annalisa & Trivin, Pedro, 2022. "Close encounters during a pandemic: Social habits and inter-generational links in the first two waves of COVID-19," Economics & Human Biology, Elsevier, vol. 47(C).
    16. Annemarie Bouma & Ivo Claassen & Ketut Natih & Don Klinkenberg & Christl A Donnelly & Guus Koch & Michiel van Boven, 2009. "Estimation of Transmission Parameters of H5N1 Avian Influenza Virus in Chickens," PLOS Pathogens, Public Library of Science, vol. 5(1), pages 1-13, January.
    17. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    18. S. M. Niaz Arifin & Christoph Zimmer & Caroline Trotter & Anaïs Colombini & Fati Sidikou & F. Marc LaForce & Ted Cohen & Reza Yaesoubi, 2019. "Cost-Effectiveness of Alternative Uses of Polyvalent Meningococcal Vaccines in Niger: An Agent-Based Transmission Modeling Study," Medical Decision Making, , vol. 39(5), pages 553-567, July.
    19. Bisin, Alberto & Moro, Andrea, 2022. "Spatial‐SIR with network structure and behavior: Lockdown rules and the Lucas critique," Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 370-388.
    20. Mirjam Kretzschmar & Rafael T Mikolajczyk, 2009. "Contact Profiles in Eight European Countries and Implications for Modelling the Spread of Airborne Infectious Diseases," PLOS ONE, Public Library of Science, vol. 4(6), pages 1-8, June.
    21. Obianuju Genevieve Aguolu & Moses Chapa Kiti & Kristin Nelson & Carol Y Liu & Maria Sundaram & Sergio Gramacho & Samuel Jenness & Alessia Melegaro & Charfudin Sacoor & Azucena Bardaji & Ivalda Macicam, 2024. "Comprehensive profiling of social mixing patterns in resource poor countries: A mixed methods research protocol," PLOS ONE, Public Library of Science, vol. 19(6), pages 1-18, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:185:y:2022:i:s1:p:s112-s130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.