IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0301638.html
   My bibliography  Save this article

Comprehensive profiling of social mixing patterns in resource poor countries: A mixed methods research protocol

Author

Listed:
  • Obianuju Genevieve Aguolu
  • Moses Chapa Kiti
  • Kristin Nelson
  • Carol Y Liu
  • Maria Sundaram
  • Sergio Gramacho
  • Samuel Jenness
  • Alessia Melegaro
  • Charfudin Sacoor
  • Azucena Bardaji
  • Ivalda Macicame
  • Americo Jose
  • Nilzio Cavele
  • Felizarda Amosse
  • Migdalia Uamba
  • Edgar Jamisse
  • Corssino Tchavana
  • Herberth Giovanni Maldonado Briones
  • Claudia Jarquín
  • María Ajsivinac
  • Lauren Pischel
  • Noureen Ahmed
  • Venkata Raghava Mohan
  • Rajan Srinivasan
  • Prasanna Samuel
  • Gifta John
  • Kye Ellington
  • Orvalho Augusto Joaquim
  • Alana Zelaya
  • Sara Kim
  • Holin Chen
  • Momin Kazi
  • Fauzia Malik
  • Inci Yildirim
  • Benjamin Lopman
  • Saad B Omer

Abstract

Background: Low-and-middle-income countries (LMICs) bear a disproportionate burden of communicable diseases. Social interaction data inform infectious disease models and disease prevention strategies. The variations in demographics and contact patterns across ages, cultures, and locations significantly impact infectious disease dynamics and pathogen transmission. LMICs lack sufficient social interaction data for infectious disease modeling. Methods: To address this gap, we will collect qualitative and quantitative data from eight study sites (encompassing both rural and urban settings) across Guatemala, India, Pakistan, and Mozambique. We will conduct focus group discussions and cognitive interviews to assess the feasibility and acceptability of our data collection tools at each site. Thematic and rapid analyses will help to identify key themes and categories through coding, guiding the design of quantitative data collection tools (enrollment survey, contact diaries, exit survey, and wearable proximity sensors) and the implementation of study procedures. We will create three age-specific contact matrices (physical, nonphysical, and both) at each study site using data from standardized contact diaries to characterize the patterns of social mixing. Regression analysis will be conducted to identify key drivers of contacts. We will comprehensively profile the frequency, duration, and intensity of infants’ interactions with household members using high resolution data from the proximity sensors and calculating infants’ proximity score (fraction of time spent by each household member in proximity with the infant, over the total infant contact time) for each household member. Discussion: Our qualitative data yielded insights into the perceptions and acceptability of contact diaries and wearable proximity sensors for collecting social mixing data in LMICs. The quantitative data will allow a more accurate representation of human interactions that lead to the transmission of pathogens through close contact in LMICs. Our findings will provide more appropriate social mixing data for parameterizing mathematical models of LMIC populations. Our study tools could be adapted for other studies.

Suggested Citation

  • Obianuju Genevieve Aguolu & Moses Chapa Kiti & Kristin Nelson & Carol Y Liu & Maria Sundaram & Sergio Gramacho & Samuel Jenness & Alessia Melegaro & Charfudin Sacoor & Azucena Bardaji & Ivalda Macicam, 2024. "Comprehensive profiling of social mixing patterns in resource poor countries: A mixed methods research protocol," PLOS ONE, Public Library of Science, vol. 19(6), pages 1-18, June.
  • Handle: RePEc:plo:pone00:0301638
    DOI: 10.1371/journal.pone.0301638
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0301638
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0301638&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0301638?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Laura Ozella & Francesco Gesualdo & Michele Tizzoni & Caterina Rizzo & Elisabetta Pandolfi & Ilaria Campagna & Alberto Eugenio Tozzi & Ciro Cattuto, 2018. "Close encounters between infants and household members measured through wearable proximity sensors," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-16, June.
    2. Joël Mossong & Niel Hens & Mark Jit & Philippe Beutels & Kari Auranen & Rafael Mikolajczyk & Marco Massari & Stefania Salmaso & Gianpaolo Scalia Tomba & Jacco Wallinga & Janneke Heijne & Malgorzata Sa, 2008. "Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases," PLOS Medicine, Public Library of Science, vol. 5(3), pages 1-1, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ichino, Andrea & Favero, Carlo A. & Rustichini, Aldo, 2020. "Restarting the economy while saving lives under Covid-19," CEPR Discussion Papers 14664, C.E.P.R. Discussion Papers.
    2. Marina Antillón & Xiao Li & Lander Willem & Joke Bilcke & RESCEU investigators & Mark Jit & Philippe Beutels, 2023. "The age profile of respiratory syncytial virus burden in preschool children of low- and middle-income countries: A semi-parametric, meta-regression approach," PLOS Medicine, Public Library of Science, vol. 20(7), pages 1-25, July.
    3. M. Hashem Pesaran & Cynthia Fan Yang, 2022. "Matching theory and evidence on Covid‐19 using a stochastic network SIR model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1204-1229, September.
    4. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    5. S. M. Niaz Arifin & Christoph Zimmer & Caroline Trotter & Anaïs Colombini & Fati Sidikou & F. Marc LaForce & Ted Cohen & Reza Yaesoubi, 2019. "Cost-Effectiveness of Alternative Uses of Polyvalent Meningococcal Vaccines in Niger: An Agent-Based Transmission Modeling Study," Medical Decision Making, , vol. 39(5), pages 553-567, July.
    6. Bisin, Alberto & Moro, Andrea, 2022. "Spatial‐SIR with network structure and behavior: Lockdown rules and the Lucas critique," Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 370-388.
    7. Mirjam Kretzschmar & Rafael T Mikolajczyk, 2009. "Contact Profiles in Eight European Countries and Implications for Modelling the Spread of Airborne Infectious Diseases," PLOS ONE, Public Library of Science, vol. 4(6), pages 1-8, June.
    8. Andrei I. Vlad & Alexei A. Romanyukha & Tatiana E. Sannikova, 2024. "Parameter Tuning of Agent-Based Models: Metaheuristic Algorithms," Mathematics, MDPI, vol. 12(14), pages 1-21, July.
    9. Pirayesh, Amir & Asadaraghi, Alireza & Mohammadi, Mehrdad & Siadat, Ali & Battaïa, Olga, 2025. "A dynamic optimization model for vaccine allocation with age considerations: A study inspired by the COVID-19 pandemic," International Journal of Production Economics, Elsevier, vol. 280(C).
    10. Gillis, Melissa & Urban, Ryley & Saif, Ahmed & Kamal, Noreen & Murphy, Matthew, 2021. "A simulation–optimization framework for optimizing response strategies to epidemics," Operations Research Perspectives, Elsevier, vol. 8(C).
    11. Valentina Marziano & Giorgio Guzzetta & Alessia Mammone & Flavia Riccardo & Piero Poletti & Filippo Trentini & Mattia Manica & Andrea Siddu & Antonino Bella & Paola Stefanelli & Patrizio Pezzotti & Ma, 2021. "The effect of COVID-19 vaccination in Italy and perspectives for living with the virus," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    12. Nikolaos P. Rachaniotis & Thomas K. Dasaklis & Filippos Fotopoulos & Platon Tinios, 2021. "A Two-Phase Stochastic Dynamic Model for COVID-19 Mid-Term Policy Recommendations in Greece: A Pathway towards Mass Vaccination," IJERPH, MDPI, vol. 18(5), pages 1-21, March.
    13. Thomas Ash & Antonio M. Bento & Daniel Kaffine & Akhil Rao & Ana I. Bento, 2022. "Author Correction: Disease-economy trade-offs under alternative epidemic control strategies," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
    14. Lewandowski, Piotr, 2020. "Occupational Exposure to Contagion and the Spread of COVID-19 in Europe," IZA Discussion Papers 13227, Institute of Labor Economics (IZA).
    15. Ruenzi, Stefan & Maeckle, Kai, 2023. "Friends with Drugs: The Role of Social Networks in the Opioid Epidemic," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277574, Verein für Socialpolitik / German Economic Association.
    16. Laura Ozella & Francesco Gesualdo & Michele Tizzoni & Caterina Rizzo & Elisabetta Pandolfi & Ilaria Campagna & Alberto Eugenio Tozzi & Ciro Cattuto, 2018. "Close encounters between infants and household members measured through wearable proximity sensors," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-16, June.
    17. Mohamed Ismail, 2023. "The Effect of Social Contacts on the Uptake of Health Innovations among Older Ethnic Minorities in the UK: A Mixed Methods Study," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    18. repec:plo:pone00:0243699 is not listed on IDEAS
    19. Charles Stoecker & Nicholas J. Sanders & Alan Barreca, 2016. "Success Is Something to Sneeze At: Influenza Mortality in Cities that Participate in the Super Bowl," American Journal of Health Economics, MIT Press, vol. 2(1), pages 125-143, January.
    20. Étienne Dagorn & Martina Dattilo & Matthieu Pourieux, 2022. "Preferences matter! Political Responses to the COVID-19 and Population’s Preferences," Economics Working Paper Archive (University of Rennes & University of Caen) 2022-01, Center for Research in Economics and Management (CREM), University of Rennes, University of Caen and CNRS.
    21. repec:plo:pone00:0128070 is not listed on IDEAS
    22. Batabyal, Saikat, 2021. "COVID-19: Perturbation dynamics resulting chaos to stable with seasonality transmission," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0301638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.