Spatio‐temporal mixed membership models for criminal activity
Author
Abstract
Suggested Citation
DOI: 10.1111/rssa.12642
Download full text from publisher
References listed on IDEAS
- Liu, Hua & Brown, Donald E., 2003. "Criminal incident prediction using a point-pattern-based density model," International Journal of Forecasting, Elsevier, vol. 19(4), pages 603-622.
- Mohler, George, 2014. "Marked point process hotspot maps for homicide and gun crime prediction in Chicago," International Journal of Forecasting, Elsevier, vol. 30(3), pages 491-497.
- Chamberlain, Alyssa W. & Hipp, John R., 2015. "It's all relative: Concentrated disadvantage within and across neighborhoods and communities, and the consequences for neighborhood crime," Journal of Criminal Justice, Elsevier, vol. 43(6), pages 431-443.
- Taddy, Matthew A., 2010. "Autoregressive Mixture Models for Dynamic Spatial Poisson Processes: Application to Tracking Intensity of Violent Crime," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1403-1417.
- Eric Piza & Shun Feng & Leslie Kennedy & Joel Caplan, 2017. "Place-based correlates of Motor Vehicle Theft and Recovery: Measuring spatial influence across neighbourhood context," Urban Studies, Urban Studies Journal Limited, vol. 54(13), pages 2998-3021, October.
- Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
- Quick, Matthew & Li, Guangquan & Brunton-Smith, Ian, 2018. "Crime-general and crime-specific spatial patterns: A multivariate spatial analysis of four crime types at the small-area scale," Journal of Criminal Justice, Elsevier, vol. 58(C), pages 22-32.
- Mohler, G. O. & Short, M. B. & Brantingham, P. J. & Schoenberg, F. P. & Tita, G. E., 2011. "Self-Exciting Point Process Modeling of Crime," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 100-108.
- Finn Lindgren & Håvard Rue & Johan Lindström, 2011. "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 423-498, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xiao‐Li Meng, 2021. "Enhancing (publications on) data quality: Deeper data minding and fuller data confession," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1161-1175, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mohler, George & Carter, Jeremy & Raje, Rajeev, 2018. "Improving social harm indices with a modulated Hawkes process," International Journal of Forecasting, Elsevier, vol. 34(3), pages 431-439.
- Zhengyi Zhou & David S. Matteson & Dawn B. Woodard & Shane G. Henderson & Athanasios C. Micheas, 2015. "A Spatio-Temporal Point Process Model for Ambulance Demand," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 6-15, March.
- Bondo, Kristin J. & Rosenberry, Christopher S. & Stainbrook, David & Walter, W. David, 2024. "Comparing risk of chronic wasting disease occurrence using Bayesian hierarchical spatial models and different surveillance types," Ecological Modelling, Elsevier, vol. 493(C).
- Jonathan Wakefield & Taylor Okonek & Jon Pedersen, 2020. "Small Area Estimation for Disease Prevalence Mapping," International Statistical Review, International Statistical Institute, vol. 88(2), pages 398-418, August.
- Mohler, George, 2014. "Marked point process hotspot maps for homicide and gun crime prediction in Chicago," International Journal of Forecasting, Elsevier, vol. 30(3), pages 491-497.
- Amanda S. Hering & Sean Bair, 2014. "Characterizing spatial and chronological target selection of serial offenders," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(1), pages 123-140, January.
- Peter A. Gao & Jonathan Wakefield, 2023. "A Spatial Variance‐Smoothing Area Level Model for Small Area Estimation of Demographic Rates," International Statistical Review, International Statistical Institute, vol. 91(3), pages 493-510, December.
- Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
- Ranjita Pandey & Himanshu Tolani, 2022. "Crime patterns in Delhi: a Bayesian spatio-temporal assessment," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2971-2980, December.
- Quick, Matthew & Li, Guangquan & Brunton-Smith, Ian, 2018. "Crime-general and crime-specific spatial patterns: A multivariate spatial analysis of four crime types at the small-area scale," Journal of Criminal Justice, Elsevier, vol. 58(C), pages 22-32.
- Kajita, Mami & Kajita, Seiji, 2020. "Crime prediction by data-driven Green’s function method," International Journal of Forecasting, Elsevier, vol. 36(2), pages 480-488.
- Nicoletta D’Angelo & Antonino Abbruzzo & Giada Adelfio, 2021. "Spatio-Temporal Spread Pattern of COVID-19 in Italy," Mathematics, MDPI, vol. 9(19), pages 1-14, October.
- Kieran Kalair & Colm Connaughton & Pierfrancesco Alaimo Di Loro, 2021. "A non‐parametric Hawkes process model of primary and secondary accidents on a UK smart motorway," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 80-97, January.
- Alex Reinhart & Joel Greenhouse, 2018. "Self‐exciting point processes with spatial covariates: modelling the dynamics of crime," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1305-1329, November.
- Ying C. MacNab, 2018. "Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 497-541, September.
- Márcio Poletti Laurini, 2017. "A spatial error model with continuous random effects and an application to growth convergence," Journal of Geographical Systems, Springer, vol. 19(4), pages 371-398, October.
- Klein, Nadja & Herwartz, Helmut & Kneib, Thomas, 2020. "Modelling regional patterns of inefficiency: A Bayesian approach to geoadditive panel stochastic frontier analysis with an application to cereal production in England and Wales," Journal of Econometrics, Elsevier, vol. 214(2), pages 513-539.
- Santitissadeekorn, N. & Short, M.B. & Lloyd, D.J.B., 2018. "Sequential data assimilation for 1D self-exciting processes with application to urban crime data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 163-183.
- Marc Francke & Alex Van de Minne, 2021. "Modeling unobserved heterogeneity in hedonic price models," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 49(4), pages 1315-1339, December.
- Mario Figueira & Carmen Guarner & David Conesa & Antonio López-Quílez & Tamás Krisztin, 2025. "Unveiling Land Use Dynamics: Insights from a Hierarchical Bayesian Spatio-Temporal Modelling of Compositional Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 30(2), pages 283-308, June.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:184:y:2021:i:4:p:1220-1244. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.