IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v91y2023i3p493-510.html
   My bibliography  Save this article

A Spatial Variance‐Smoothing Area Level Model for Small Area Estimation of Demographic Rates

Author

Listed:
  • Peter A. Gao
  • Jonathan Wakefield

Abstract

Accurate estimates of subnational health and demographic indicators are critical for informing policy. Many countries collect relevant data using complex household surveys, but when data are limited, direct weighted estimates of small area proportions may be unreliable. Area level models treating these direct estimates as response data can improve precision but often require known sampling variances of the direct estimators for all areas. In practice, the sampling variances are estimated, so standard approaches do not account for a key source of uncertainty. To account for variability in the estimated sampling variances, we propose a hierarchical Bayesian spatial area level model for small area proportions that smooths both the estimated proportions and sampling variances to produce point and interval estimates of rates of interest. We demonstrate the performance of our approach via simulation and application to vaccination coverage and HIV prevalence data from the Demographic and Health Surveys.

Suggested Citation

  • Peter A. Gao & Jonathan Wakefield, 2023. "A Spatial Variance‐Smoothing Area Level Model for Small Area Estimation of Demographic Rates," International Statistical Review, International Statistical Institute, vol. 91(3), pages 493-510, December.
  • Handle: RePEc:bla:istatr:v:91:y:2023:i:3:p:493-510
    DOI: 10.1111/insr.12556
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/insr.12556
    Download Restriction: no

    File URL: https://libkey.io/10.1111/insr.12556?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shonosuke Sugasawa & Hiromasa Tamae & Tatsuya Kubokawa, 2017. "Bayesian Estimators for Small Area Models Shrinking Both Means and Variances," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 150-167, March.
    2. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    3. Tapabrata Maiti & Hao Ren & Samiran Sinha, 2014. "Prediction Error of Small Area Predictors Shrinking Both Means and Variances," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 775-790, September.
    4. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    5. Kleffe, J. & Rao, J. N. K., 1992. "Estimation of mean square error of empirical best linear unbiased predictors under a random error variance linear model," Journal of Multivariate Analysis, Elsevier, vol. 43(1), pages 1-15, October.
    6. Monica Pratesi & Nicola Salvati, 2008. "Small area estimation: the EBLUP estimator based on spatially correlated random area effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 17(1), pages 113-141, February.
    7. J. T. Gene Hwang & Jing Qiu & Zhigen Zhao, 2009. "Empirical Bayes confidence intervals shrinking both means and variances," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 265-285, January.
    8. Shonosuke Sugasawa & Tatsuya Kubokawa & J. N. K. Rao, 2018. "Small area estimation via unmatched sampling and linking models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 407-427, June.
    9. Finn Lindgren & Håvard Rue & Johan Lindström, 2011. "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 423-498, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shonosuke Sugasawa & Tatsuya Kubokawa & J. N. K. Rao, 2018. "Small area estimation via unmatched sampling and linking models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 407-427, June.
    2. Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    3. Ying C. MacNab, 2018. "Rejoinder on: Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 554-569, September.
    4. Seppo Virtanen & Mark Girolami, 2021. "Spatio‐temporal mixed membership models for criminal activity," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1220-1244, October.
    5. Edgar Santos‐Fernandez & Erin E. Peterson & Julie Vercelloni & Em Rushworth & Kerrie Mengersen, 2021. "Correcting misclassification errors in crowdsourced ecological data: A Bayesian perspective," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 147-173, January.
    6. Ying C. MacNab, 2018. "Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 497-541, September.
    7. Jonathan Wakefield & Taylor Okonek & Jon Pedersen, 2020. "Small Area Estimation for Disease Prevalence Mapping," International Statistical Review, International Statistical Institute, vol. 88(2), pages 398-418, August.
    8. Márcio Poletti Laurini, 2017. "A spatial error model with continuous random effects and an application to growth convergence," Journal of Geographical Systems, Springer, vol. 19(4), pages 371-398, October.
    9. Radka Jersakova & James Lomax & James Hetherington & Brieuc Lehmann & George Nicholson & Mark Briers & Chris Holmes, 2022. "Bayesian imputation of COVID‐19 positive test counts for nowcasting under reporting lag," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 834-860, August.
    10. Julie Gershunskaya, 2020. "Discussion of "Small area estimation: its evolution in five decades", by Malay Ghosh," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 23-29, August.
    11. Ying C. MacNab, 2023. "On coregionalized multivariate Gaussian Markov random fields: construction, parameterization, and Bayesian estimation and inference," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 263-293, March.
    12. Klein, Nadja & Herwartz, Helmut & Kneib, Thomas, 2020. "Modelling regional patterns of inefficiency: A Bayesian approach to geoadditive panel stochastic frontier analysis with an application to cereal production in England and Wales," Journal of Econometrics, Elsevier, vol. 214(2), pages 513-539.
    13. Aaron Osgood‐Zimmerman & Jon Wakefield, 2023. "A Statistical Review of Template Model Builder: A Flexible Tool for Spatial Modelling," International Statistical Review, International Statistical Institute, vol. 91(2), pages 318-342, August.
    14. Joscha Krause & Jan Pablo Burgard & Domingo Morales, 2022. "Robust prediction of domain compositions from uncertain data using isometric logratio transformations in a penalized multivariate Fay–Herriot model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(1), pages 65-96, February.
    15. Connor Donegan & Yongwan Chun & Daniel A. Griffith, 2021. "Modeling Community Health with Areal Data: Bayesian Inference with Survey Standard Errors and Spatial Structure," IJERPH, MDPI, vol. 18(13), pages 1-27, June.
    16. Jinjie Chen & Joon Jin Song & James D. Stamey, 2022. "A Bayesian Hierarchical Spatial Model to Correct for Misreporting in Count Data: Application to State-Level COVID-19 Data in the United States," IJERPH, MDPI, vol. 19(6), pages 1-15, March.
    17. Osafu Augustine Egbon & Omodolapo Somo-Aina & Ezra Gayawan, 2021. "Spatial Weighted Analysis of Malnutrition Among Children in Nigeria: A Bayesian Approach," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(3), pages 495-523, December.
    18. Lu Chen & Luca Sartore & Habtamu Benecha & Valbona Bejleri & Balgobin Nandram, 2022. "Smoothing County-Level Sampling Variances to Improve Small Area Models’ Outputs," Stats, MDPI, vol. 5(3), pages 1-18, September.
    19. Nicoletta D’Angelo & Antonino Abbruzzo & Giada Adelfio, 2021. "Spatio-Temporal Spread Pattern of COVID-19 in Italy," Mathematics, MDPI, vol. 9(19), pages 1-14, October.
    20. David L. Miller & Richard Glennie & Andrew E. Seaton, 2020. "Understanding the Stochastic Partial Differential Equation Approach to Smoothing," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(1), pages 1-16, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:91:y:2023:i:3:p:493-510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.