IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v180y2017i4p1111-1136.html
   My bibliography  Save this article

Poverty mapping in small areas under a twofold nested error regression model

Author

Listed:
  • Yolanda Marhuenda
  • Isabel Molina
  • Domingo Morales
  • J. N. K. Rao

Abstract

No abstract is available for this item.

Suggested Citation

  • Yolanda Marhuenda & Isabel Molina & Domingo Morales & J. N. K. Rao, 2017. "Poverty mapping in small areas under a twofold nested error regression model," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 1111-1136, October.
  • Handle: RePEc:bla:jorssa:v:180:y:2017:i:4:p:1111-1136
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssa.12306
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chris Elbers & Jean O. Lanjouw & Peter Lanjouw, 2003. "Micro--Level Estimation of Poverty and Inequality," Econometrica, Econometric Society, vol. 71(1), pages 355-364, January.
    2. Stukel, D. M. & Rao, J. N. K., 1997. "Estimation of regression models with nested error structure and unequal error variances under two and three stage cluster sampling," Statistics & Probability Letters, Elsevier, vol. 35(4), pages 401-407, November.
    3. Foster, James & Greer, Joel & Thorbecke, Erik, 1984. "A Class of Decomposable Poverty Measures," Econometrica, Econometric Society, vol. 52(3), pages 761-766, May.
    4. Marhuenda, Yolanda & Molina, Isabel & Morales, Domingo, 2013. "Small area estimation with spatio-temporal Fay–Herriot models," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 308-325.
    5. Nikos Tzavidis & Nicola Salvati & Monica Pratesi & Ray Chambers, 2008. "M-quantile models with application to poverty mapping," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 17(3), pages 393-411, July.
    6. Ray Chambers & Nicola Salvati & Nikos Tzavidis, 2016. "Semiparametric small area estimation for binary outcomes with application to unemployment estimation for local authorities in the UK," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(2), pages 453-479, February.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:180:y:2017:i:4:p:1111-1136. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/rssssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.