IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v168y2005i4p679-700.html
   My bibliography  Save this article

Trends in inequality in infant mortality in the north of England, 1921–1973, and their association with urban and social structure

Author

Listed:
  • P. Congdon
  • H. Southall

Abstract

Summary. The paper analyses a time series of infant mortality rates in the north of England from 1921 to the early 1970s at a spatial scale that is more disaggregated than in previous studies of infant mortality trends in this period. The paper describes regression methods to obtain mortality gradients over socioeconomic indicators from the censuses of 1931, 1951, 1961 and 1971 and to assess whether there is any evidence for widening spatial inequalities in infant mortality outcomes against a background of an overall reduction in the infant mortality rate. Changes in the degree of inequality are also formally assessed by inequality measures such as the Gini and Theil indices, for which sampling densities are obtained and significant changes assessed. The analysis concerns a relatively infrequent outcome (especially towards the end of the period that is considered) and a high proportion of districts with small populations, so necessitating the use of appropriate methods for deriving indices of inequality and for regression modelling.

Suggested Citation

  • P. Congdon & H. Southall, 2005. "Trends in inequality in infant mortality in the north of England, 1921–1973, and their association with urban and social structure," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(4), pages 679-700, November.
  • Handle: RePEc:bla:jorssa:v:168:y:2005:i:4:p:679-700
    DOI: 10.1111/j.1467-985X.2005.00370.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-985X.2005.00370.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-985X.2005.00370.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robinson, Diane & Pinch, Steven, 1987. "A geographical analysis of the relationship between early childhood death and socio-economic environment in an English city," Social Science & Medicine, Elsevier, vol. 25(1), pages 9-18, January.
    2. Chib, Siddhartha, 1993. "Bayes regression with autoregressive errors : A Gibbs sampling approach," Journal of Econometrics, Elsevier, vol. 58(3), pages 275-294, August.
    3. Shaw, Mary & Gordon, David & Dorling, Danny & Mitchell, Richard & Davey Smith, George, 2000. "Increasing mortality differentials by residential area level of poverty: Britain 1981-1997," Social Science & Medicine, Elsevier, vol. 51(1), pages 151-153, July.
    4. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    5. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Craig Anderson & Louise M. Ryan, 2017. "A Comparison of Spatio-Temporal Disease Mapping Approaches Including an Application to Ischaemic Heart Disease in New South Wales, Australia," IJERPH, MDPI, vol. 14(2), pages 1-16, February.
    2. Fathim Rashna Kallingal & Mohammed Firoz C, 2022. "Developing a methodological framework for capturing regional disparities in social development," Regional Science Policy & Practice, Wiley Blackwell, vol. 14(5), pages 1085-1112, October.
    3. Erreygers, Guido, 2009. "Can a single indicator measure both attainment and shortfall inequality?," Journal of Health Economics, Elsevier, vol. 28(4), pages 885-893, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Craig Anderson & Louise M. Ryan, 2017. "A Comparison of Spatio-Temporal Disease Mapping Approaches Including an Application to Ischaemic Heart Disease in New South Wales, Australia," IJERPH, MDPI, vol. 14(2), pages 1-16, February.
    2. Thomas C. McHale & Claudia M. Romero-Vivas & Claudio Fronterre & Pedro Arango-Padilla & Naomi R. Waterlow & Chad D. Nix & Andrew K. Falconar & Jorge Cano, 2019. "Spatiotemporal Heterogeneity in the Distribution of Chikungunya and Zika Virus Case Incidences during their 2014 to 2016 Epidemics in Barranquilla, Colombia," IJERPH, MDPI, vol. 16(10), pages 1-21, May.
    3. Shota Homma & Daisuke Murakami & Shinya Hosokawa & Koji Kanefuji, 2025. "Introduction risk of fire ants through container cargo in ports: Data integration approach considering a logistic network," PLOS ONE, Public Library of Science, vol. 20(2), pages 1-15, February.
    4. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    5. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    6. Ranjita Pandey & Himanshu Tolani, 2022. "Crime patterns in Delhi: a Bayesian spatio-temporal assessment," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2971-2980, December.
    7. Strong P Marbaniang & Holendro Singh Chungkham & Hemkhothang Lhungdim, 2022. "A structured additive modeling of diabetes and hypertension in Northeast India," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-20, January.
    8. Rodrigues, E.C. & Assunção, R., 2012. "Bayesian spatial models with a mixture neighborhood structure," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 88-102.
    9. Massimo Bilancia & Giacomo Demarinis, 2014. "Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 71-94, March.
    10. Mabel Morales-Otero & Vicente Núñez-Antón, 2021. "Comparing Bayesian Spatial Conditional Overdispersion and the Besag–York–Mollié Models: Application to Infant Mortality Rates," Mathematics, MDPI, vol. 9(3), pages 1-33, January.
    11. Thierno Souleymane Barry & Oscar Ngesa & Nelson Owuor Onyango & Henry Mwambi, 2021. "Bayesian Spatial Modeling of Anemia among Children under 5 Years in Guinea," IJERPH, MDPI, vol. 18(12), pages 1-18, June.
    12. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    13. Congdon, P., 2007. "Bayesian modelling strategies for spatially varying regression coefficients: A multivariate perspective for multiple outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2586-2601, February.
    14. Congdon, Peter, 2007. "Mixtures of spatial and unstructured effects for spatially discontinuous health outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3197-3212, March.
    15. Alexandra Schmidt & Ajax Moreira & Steven Helfand & Thais Fonseca, 2009. "Spatial stochastic frontier models: accounting for unobserved local determinants of inefficiency," Journal of Productivity Analysis, Springer, vol. 31(2), pages 101-112, April.
    16. Francisca Corpas-Burgos & Miguel A. Martinez-Beneito, 2021. "An Autoregressive Disease Mapping Model for Spatio-Temporal Forecasting," Mathematics, MDPI, vol. 9(4), pages 1-17, February.
    17. Li Xu & Qingshan Jiang & David R. Lairson, 2019. "Spatio-Temporal Variation of Gender-Specific Hypertension Risk: Evidence from China," IJERPH, MDPI, vol. 16(22), pages 1-26, November.
    18. Peter Congdon, 2013. "Spatially Interpolated Disease Prevalence Estimation Using Collateral Indicators of Morbidity and Ecological Risk," IJERPH, MDPI, vol. 10(10), pages 1-15, October.
    19. Isabel Martínez-Pérez & Verónica González-Iglesias & Valentín Rodríguez Suárez & Ana Fernández-Somoano, 2021. "Spatial Distribution of Hospitalizations for Ischemic Heart Diseases in the Central Region of Asturias, Spain," IJERPH, MDPI, vol. 18(23), pages 1-10, November.
    20. William Browne & Harvey Goldstein, 2010. "MCMC Sampling for a Multilevel Model With Nonindependent Residuals Within and Between Cluster Units," Journal of Educational and Behavioral Statistics, , vol. 35(4), pages 453-473, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:168:y:2005:i:4:p:679-700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.